
FAIR RESOURCE ALLOCATION IN RICH DOMAINS

LU XINHANG

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

August 2021

FAIR RESOURCE ALLOCATION IN RICH DOMAINS

LU XINHANG

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

A thesis submitted to the Nanyang Technological University
in partial fulfilment of the requirement for the

degree of Doctor of Philosophy

August 2021

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original research done

by me except where otherwise stated in this thesis. The thesis work has not been submitted

for a degree or professional qualification to any other university or institution. I declare that

this thesis is written by myself and is free of plagiarism and of su�cient grammatical clarity

to be examined. I confirm that the investigations were conducted in accord with the ethics

policies and integrity standards of Nanyang Technological University and that the research

data are presented honestly and without prejudice.

20 August 2021
. .

Date Lu Xinhang

i

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and declare it of su�cient

grammatical clarity to be examined. To the best of my knowledge, the thesis is free of

plagiarism and the research and writing are those of the candidate’s except as acknowledged

in the Author Attribution Statement. I confirm that the investigations were conducted in

accord with the ethics policies and integrity standards of Nanyang Technological University

and that the research data are presented honestly and without prejudice.

20 August 2021
. .

Date Bei Xiaohui

iii

Authorship Attribution Statement

Please select one of the following; ⇤delete as appropriate:

⇤(A) This thesis does not contain any materials from papers published in peer-reviewed
journals or from papers accepted at conferences in which I am listed as an author.

⇤(B) This thesis contains material from four papers published in the following peer-reviewed
journal(s) / from papers accepted at conferences in which I am listed as an author.

Chapter 4 is published as Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang
Lu. Fair division of mixed divisible and indivisible goods. Artificial Intelligence (AIJ), 293:
103436, 2021. doi:10.1016/j.artint.2020.103436. Preliminary version in AAAI’20.

The contributions of the co-authors are as follows:

• By convention, publications in theoretical computer science list authors in alphabetical
order and authors are considered as equal contribution. This is a theory work and all
results were obtained from discussion. After the publication of the initial version of this
work, Mr. Zihao Li pointed out a bug in a proof in the conference version of this paper.

• All of us were involved in preparing the conference submission. Specifically, Prof. Jinyan
Liu prepared the very first draft of the conference version of this paper; next, I took over
the preparation; the draft was later revised by Profs. Xiaohui Bei and Shengxin Liu.

• All of us were involved in preparing the journal version. I took the lead on the journal
revision.

Chapter 5 is published as Xiaohui Bei, Shengxin Liu, Xinhang Lu, and Hongao Wang. Max-
imin fairness with mixed divisible and indivisible goods. Autonomous Agents and Multi-
Agent Systems (JAAMAS), 35(2):34, 2021. doi:10.1007/s10458-021-09517-7. Preliminary
version in AAAI’21.

The contributions of the co-authors are as follows:

• By convention, publications in theoretical computer science list authors in alphabetical
order and authors are considered as equal contribution. This is a theory work and all
results were obtained from discussion.

• Mr. Hongao Wang and I prepared the draft of the conference version of this paper, which
was later revised by Profs. Xiaohui Bei and Shengxin Liu.

• All of us were involved in preparing the journal version. I took the lead on the journal
revision.

v

vi

Chapter 6 is published as Xiaohui Bei, Xinhang Lu, Pasin Manurangsi, and Warut Suksom-
pong. The price of fairness for indivisible goods. Theory of Computing Systems (TOCS),
Forthcoming. doi:10.1007/s00224-021-10039-8. Preliminary version in IJCAI’19.

The contributions of the co-authors are as follows:

• By convention, publications in theoretical computer science list authors in alphabetical
order and authors are considered as equal contribution. This is a theory work and all
results were obtained from discussion.

• All of us were involved in preparing the conference submission by writing di�erent parts
of the paper. The manuscript was overall taken care of by Prof. Warut Suksompong.

Chapter 7 is published as Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, and Warut Suksom-
pong. The price of connectivity in fair division. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI), pages 5151–5158, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16651.

The contributions of the co-authors are as follows:

• By convention, publications in theoretical computer science list authors in alphabetical
order and authors are considered as equal contribution. This is a theory work and all
results were obtained from discussion.

• All of us were involved in preparing the submission. I wrote the initial version of the
proofs; Prof. Warut Suksompong took over the writing.

20 August 2021
. .

Date Lu Xinhang

Abstract

How should one allocate scarce resources among a group of people in a satisfactory manner
when the participants have di�erent preferences over the resources, like how to divide an
inheritance or ration healthcare? Fairness is one of the desirable properties in resource
allocation applications. This thesis aims at allocating scarce resources among interested
agents in such a way that every agent involved feels that she gets a fair share. To this end,
we present our results in three parts: (i) axiomatic study of fairness for mixed goods, (ii)
quantitative measure of trade-o�s between competing objectives, and (iii) mechanism design
for sharing public goods.

In Part I, we study the problem of fair division when the resources to be divided consist
of both divisible and indivisible goods, or mixed goods for short. In this setting, we propose
a novel notion of fairness, envy-freeness for mixed goods (EFM), and show that EFM can
always be satisfied for any number of agents with additive valuations. In addition, we extend
the analysis of a well-known fairness notion of maximin share (MMS) guarantee to the mixed
goods setting by providing insights on how the MMS approximation guarantee would be
a�ected when divisible resources are introduced as well as designing algorithms that could
find allocations with good MMS approximations.

In Part II, we focus on indivisible goods settings, and study trade-o�s between fairness
and other desiderata. An issue orthogonal to fairness is e�ciency, or social welfare. The
concept of (strong) price of fairness quantitatively measures the worst-case loss of social
welfare due to fairness constraints. We study the (strong) price of fairness for indivisible
goods by focusing on several well-established fairness notions with guaranteed existence.
Next, in the same vein, we introduce the price of connectivity to quantify the price in terms
of fairness that we have to pay if we desire connectivity in a fair division model where indi-
visible goods form an undirected graph and each agent must receive a connected subgraph,
and derive bounds on this quantity.

In Part III, we depart from the “division” framework and study a public goods variant of
the classic cake cutting problem where instead of competing with one another for the cake,
the agents all share the same subset of the cake which must be chosen subject to a length
constraint. We refer to this setting as cake sharing. Our focus in this setting is on the design
of truthful and fair mechanisms in the presence of strategic agents.

vii

Acknowledgements

First and foremost, I would like to thank my supervisor, Xiaohui Bei, for the great support,
the wise guidance, and the constant encouragement. Back then, Xiaohui gave a talk on
E�cient Algorithms for Unknown Markets at the Shanghai Theory Day; I was there and
totally captivated by his clear, interesting talk and his research at the time. I feel extremely
happy and fortunate that later I have the opportunity to do research under his supervision.
For the past four years, Xiaohui has guided me with patience, provided opportunities in all
aspects to develop me into a better researcher, and furthermore, inspired me with his quick
and clear thoughts, deep research insights, and incredible intuitions.

Next, I wish to thank Bo An and Yi Li for serving as my Thesis Advisory Committee
members as well as Yi Li, Huaxiong Wang, and Zhenzhen Yan for serving as the Oral Qual-
ifying Examination examiners. I would like to extend my gratitude to external and internal
examiners for their helpful comments/suggestions to my thesis as well as the Oral Examina-
tion Panel members.

I have been fortune to collaborate with many wonderful people on various interesting
research projects, including Haris Aziz, Xiaohui Bei, Hau Chan, Jiarui Gan, Ayumi Igarashi,
Bo Li, Zihao Li, Jinyan Liu, Shengxin Liu, Pasin Manurangsi, Warut Suksompong, and
Hongao Wang. It has been my pleasure to learn from all of the collaborators.

Special thanks go to Warut Suksompong. At the end of my first semester, Warut visited
Xiaohui and gave a talk on Computing a Small Agreeable Set of Indivisible Items. I found
the talk really fascinating and liked it very much. I was super excited about the rigorously
mathematical way of defining fairness, and have been inspired to know more about fair
division since then. In addition, during those collaborations and communication, Warut has
inspired me with his excellent writing as well as infinite patience, enthusiasm, and humour.

I am grateful for everyone who has made my time at NTU so pleasant. I would like to
thank Hao Wang, Guangda Huzhang, Jialin Wang, Shaoyi Wang, Bowen Yuan, Shengxin
Liu, Hongao Wang, Chunxue Yang, Zihao Li, and Junjie Luo for having a collegial atmo-
sphere at SPMS-MAS-05-34, and Jareena Tharnnukhroh, Hanh Hong Tran, Yongsheng Liu,
Zhengyang Guo, Zhibin Zhang, Nankun Hong, Jiazu Zhou, Yongli Zhou, Xiaoyu Liu, Zhix-
iang Zhang, and Xin Sun for their help and/or those outings. Thanks to the sta� at NTU,
especially Liu Shuying Leneatte, Lee Yean Chin, Pearlyn Quek Si Yu, Wendy Tan Hui Min,
and Tong Wan Ling, for helping me with all sorts of administrative matters.

Shout out to NTUGSA dance crews: Choreomantics and Jazz All Night. I really had
good times with the wonderful dancers at Yunnan Corner. Huge thanks go to Chit Lin Su,
Souravik Dutta, Sijie Ji, Yang Liu, Ziqing Peng, and Boyi Su for their friendship and for
teaching me how to dance Hip Hop and Jazz. Very special thanks to Ziqing: your smile was
so warm and gorgeous and truly healed me when I was depressed.

ix

x

Thank you to all of my friends for your care and encouragement as well as for sharing my
ups and downs over the years: In particular, I would like to thank Yujun Cai for our chats
about friendship, (Ph.D.) life, work, vocation, etc., Yuejia Chen for sharing our hobbies,
passions, ideas, and opinions with each other, Raven de la Cruz for making my life colourful
and for everything that you have done to support me, Muyi He for being an inspiration to me,
Shuqi Wang for knowing each other for two decades, Yue Zhang for sharing your knowledge
and experiences with me, and Kemin Zhu for taking care of me. I am very fortunate and
grateful to have all of you in my life.

Finally, and most importantly, words cannot express how grateful I am to Mom, Yanxue
Yin, Dad, Jinglian Lu, and my sister, Ying Lu for their unwavering love, care, patience,
support, and encouragement throughout the years. Thank you very much for always being
there for me. I love you!

Pursuing a Ph.D. has been one of the most fulfilling experiences of my life, and I feel
truly grateful to have had the opportunity to pursue my intellectual curiosity and interests.
£Góù6�Æ:⌘à⇡⇥1

Xinhang
August 2021

1A Foreigner, Jian Li.

Table of Contents

1 Introduction 1
1.1 Overview of Thesis Structure and Our Results 2

2 Preliminaries 5
2.1 Cake Cutting Model . 5
2.2 Indivisible Goods Setting . 6
2.3 Mixed Goods Model . 9

I Axiomatic Study of Fairness for Mixed Goods 11

3 Introduction 13
3.1 Related Work . 15

4 Envy-Freeness for Mixed Goods 17
4.1 Introduction . 17
4.2 Existence . 18

4.2.1 The Algorithm . 21
4.2.2 Analysis . 22

4.3 EFM Allocation in Special Case . 27
4.3.1 Two Agents . 27
4.3.2 Any Number of Agents with Piecewise Linear Functions 28

4.4 Relaxation: ✏-EFM . 29
4.4.1 The Algorithm . 29
4.4.2 Analysis . 31

4.5 EFM and Economic E�ciency . 34

5 Maximin Share Guarantee 37
5.1 Introduction . 37
5.2 MMS Approximation Guarantee . 38

5.2.1 Worst-Case MMS Approximation Guarantee 38
5.2.2 Cake Does Not Always Help . 39

5.3 Existence and Computation of Approximate MMS Allocations 41
5.3.1 Homogeneous Cake . 42
5.3.2 Heterogeneous Cake . 45
5.3.3 Computation . 46
5.3.4 Improvement of the Approximation Ratio 48

xi

xii TABLE OF CONTENTS

II Fairness Versus Other Desideratum for Indivisible Goods 49

6 Price of Fairness 51
6.1 Introduction . 51

6.1.1 Related Work . 54
6.2 Preliminaries . 54
6.3 Envy-Freeness Relaxations . 55
6.4 Round-Robin Algorithm . 60
6.5 Balancedness . 63
6.6 Welfare Maximizers . 65
6.7 Pareto Optimality . 69
6.8 Conclusion and Future Work . 70

7 Price of Connectivity 71
7.1 Introduction . 71

7.1.1 Related Work . 73
7.2 Preliminaries . 74
7.3 Maximin Share Guarantee . 76

7.3.1 Two Agents . 76
7.3.2 Any Number of Agents . 84

7.4 Envy-Freeness Relaxations . 90
7.4.1 Two Agents . 90
7.4.2 Three Agents . 96

7.5 Conclusion and Future Work . 100

IIIOther Settings 101

8 Truthful Cake Sharing 103
8.1 Introduction . 103

8.1.1 Related Work . 105
8.2 Cake Sharing Model . 106
8.3 Leximin Solution . 108
8.4 Egalitarian Ratio . 113
8.5 Maximum Nash Welfare . 116
8.6 Without Blocking: Impossibility Result 119
8.7 Non-Uniform Costs . 121
8.8 Conclusion and Future Work . 122

9 Conclusion and Open Problems 123

Bibliography 125

Chapter 1

Introduction

In the first Politics class of high school, we learned and discussed about justice. After that
class, we were assigned a short essay as an informal homework to get used to high school
life; that is, we had the freedom to discuss whatever we want, as long as it centred around
the topic. I started my essay by saying something like “everyone should get a fair share, for
instance, each individual gets an equal size of the resources that are to be allocated among
them.” When I continued working on the essay, I felt confused and did not know what “fair
share” really means. There was some vague idea in my mind: di�erent individuals may have
di�erent preferences over the resources. In other words, even if it is possible to give each
individual exactly the same size of the resources, they might still not be able to have the
same level of happiness.1 I ended my essay by suggesting that if we can make the happiness
level of each individual be (roughly) the same, then such an allocation should be fair, in
some sense; however, I did not present any concrete method to reach this situation.

How to fairly allocate resources among multiple interested agents? Similar question has
occurred to many others in a wide variety of real-world applications, such as when assign-
ing rooms to and dividing the rent between several housemates—commonly known as rent
division in the literature [90], when dividing marital property in a divorce settlement [56]
or inheritance among multiple heirs in an inheritance division, when allocating medical
resource such as vaccines, ventilators and other essential medical supplies in healthcare ra-
tioning under emergency scenarios [14, 130], and so on. The allocation of scarce resources
among interested agents is a problem that arises frequently and plays a major role in our
society. We often want to ensure that the allocation that we select is fair to all of the agents.

A conceptual challenge is to specify compelling fairness notions—after all, fairness is
an abstract idea and has its subjective nature. Notably, in the 1940s, Steinhaus [146] for-
mulated and studied the cake cutting problem: how to fairly divide a cake between multiple
participants with potentially di�erent preferences, in which the cake serves as a metaphor
for heterogeneous divisible resources such as land or time. Steinhaus proposed that in an al-
location that involves n participants, every participant should receive a piece of cake which

1Now, I know that the solution concept, termed “equitability” by academics, has been studied for over half
a century in the literature of fair division.

1

2 CHAPTER 1. INTRODUCTION

is worth at least 1/n of her value for the cake. This property is known as proportionality,
one of the most classic and prominent fairness notions. In addition, Steinhaus also showed
that a proportional allocation can always be found for any number of agents over any cake.

On the conceptual level, Steinhaus’ insight suggested that it is indeed possible to rig-
orously define fairness in mathematical terms. The literature of fair division, which dates
back to the design of cake cutting algorithms [79, 146], provides several ways of defining
what fair means. For instance, in addition to proportionality, envy-freeness requires that
each agent weakly prefers her own piece of cake to the piece given to any other agent and
equitability requires that every agent receives the same utility.

Looking beyond cake cutting, the allocation of heterogeneous indivisible goods is deeply
practical. This pertains to the allocation of houses, jewellery, electronics, artworks, and
many other common items. The fair allocation of indivisible goods has received consider-
able attention from various research communities, especially in the last few years. We refer
to surveys [12, 50, 119, 128] for an overview of recent developments in the area. While all of
the aforementioned fairness notions can always be satisfied in the cake cutting setting, this is
not the case for indivisible goods allocation.2 As a result, relaxations have been studied; we
defer the discussion of these relaxations to Chapter 3 where we present a literature review
on fair division with divisible or indivisible goods.

This dissertation explores the same line of research, with a focus on the existence, com-
putation, and/or approximation of a fairness notion as well as its interaction with other
desideratum such as economic e�ciency, social welfare, feasibility constraint of an allo-
cation, truthfulness, etc.

1.1 Overview of Thesis Structure and Our Results

We begin in Chapter 2 (Preliminaries) by introducing canonical fair division models, i.e.,
cake cutting and indivisible goods allocation as well as the recently-introduced mixed goods
model. Along the way, we also introduce concepts and definitions that are used across mul-
tiple chapters of the dissertation. Then, to present our results, we divide the dissertation into
three parts: Part I axiomatically studies fair division of a mixture of divisible and indivisible
goods, Part II quantitatively measures trade-o�s between fairness and other compelling ob-
jectives in indivisible goods allocation, and Part III considers a variant resource allocation
setting where public goods are to be allocated. Finally, we conclude the dissertation and
provide a summary of interesting open questions for future work in Chapter 9.

Part I: Axiomatic Study of Fairness for Mixed Goods

In this part, we perform axiomatic study of fairness, with a special focus on fair division of
mixed goods—the set of resources contains both divisible and indivisible goods. We begin in

2The canonical example is two agents trying to divide a single valuable good.

1.1. OVERVIEW OF THESIS STRUCTURE AND OUR RESULTS 3

Chapter 3 by motivating this line of research. Next, we present our analyses of two intrigu-
ing solution concepts—envy-freeness for mixed goods and maximin share guarantee—in
Chapters 4 and 5, respectively.

Chapter 4: Envy-Freeness for Mixed Goods Since classic fairness notions such as envy-
freeness and envy-freeness up to one good (EF1) cannot be directly applied to the mixed
goods setting, Chapter 4 proposes to study a new fairness notion—envy-freeness for mixed
goods (EFM), which is a direct generalization of both envy-freeness and EF1 to the mixed
goods setting. We show that an EFM allocation always exists for any number of agents
with additive valuations. We also devise e�cient algorithms to compute an EFM alloca-
tion for two agents with general additive valuations as well as for any number of agents
with piecewise linear valuations over the divisible goods. Then, we relax the envy-freeness
requirement, instead asking for ✏-envy-freeness for mixed goods (✏-EFM), and present an
e�cient algorithm that finds an ✏-EFM allocation. Last, we discuss the possibilities and
di�culties of combining EFM together with economic e�ciency considerations.

Chapter 5: Maximin Share Guarantee In this chapter, we focus on the well-studied
fairness notion of maximin share (MMS) guarantee. With only indivisible goods, an MMS
allocation may not exist, but a constant multiplicative approximate allocation always does.
We analyze how the MMS approximation guarantee would be a�ected when the resources
to be allocated also contain divisible goods. In particular, we show that the worst-case MMS
approximation guarantee with mixed goods is no worse than that with only indivisible goods.
However, there exist problem instances to which adding some divisible resources would
strictly decrease the MMS approximation ratios of the instances. On the algorithmic front,
we propose a constructive algorithm that will always produce an ↵-MMS allocation for any
number of agents, where ↵ takes values between 1/2 and 1 and is a monotonically increasing
function determined by how agents value the divisible goods relative to their maximin share.

Part II: Fairness Versus Other Desideratum for Indivisible Goods

In this part, we turn our attention to the indivisible goods setting and quantitatively measure
trade-o�s between fairness and other desiderata such as e�ciency (Chapter 6) and connec-
tivity (Chapter 7).

Chapter 6: Price of Fairness Fairness, certainly, is not the only objective in resource
allocation. For instance, getting rid of the resources, which leaves all agents empty-handed,
definitely does not occur any envy. With that being said, such an allocation is undesirable
because it severely hurts economic e�ciency. This chapter investigates the e�ciency of fair
allocations of indivisible goods using the well-studied price of fairness concept. Previous
work has focused on classical fairness notions such as envy-freeness, proportionality, and
equitability. However, these notions cannot always be satisfied for indivisible goods, leading

4 CHAPTER 1. INTRODUCTION

to certain instances being ignored in the analysis. In this chapter, we focus instead on notions
with guaranteed existence, including envy-freeness up to one good, balancedness, maximum
Nash welfare, and leximin. We also introduce the concept of strong price of fairness, which
captures the e�ciency loss in the worst fair allocation as opposed to that in the best fair
allocation as in the price of fairness. We mostly provide tight or asymptotically tight bounds
on the worst-case e�ciency loss for allocations satisfying these notions, for both the price
of fairness and the strong price of fairness.

Chapter 7: Price of Connectivity This chapter deals with the trade-o� between fairness
and connectivity. That is, we study the allocation of indivisible goods that form an undi-
rected graph and quantify the loss of fairness when we impose a constraint that each agent
must receive a connected subgraph. Our focus is on well-studied fairness notions including
envy-freeness and maximin share fairness. We introduce the price of connectivity to capture
the largest gap between the graph-specific and the unconstrained maximin share, and derive
bounds on this quantity which are tight for large classes of graphs in the case of two agents
and for paths and stars in the general case. For instance, with two agents we show that for
biconnected graphs it is possible to obtain at least 3/4 of the maximin share with connected
allocations, while for the remaining graphs the guarantee is at most 1/2. In addition, we de-
termine the optimal relaxation of envy-freeness that can be obtained with each graph for two
agents, and characterize the set of trees and complete bipartite graphs that always admit an
allocation satisfying envy-freeness up to one good for three agents. Our work demonstrates
several applications of graph-theoretic tools and concepts to fair division problems.

Part III: Other Settings

In this part, we discuss a variant resource allocation setting in Chapter 8.

Chapter 8: Truthful Cake Sharing The classic cake cutting problem concerns the fair
allocation of a heterogeneous resource among interested agents. In this chapter, we study
a public goods variant of the problem where instead of competing with one another for the
cake, the agents all share the same subset of the cake which must be chosen subject to a
length constraint. We focus on the design of truthful and fair mechanisms in the presence
of strategic agents who have piecewise uniform utilities over the cake. On the one hand, we
show that the leximin solution is truthful and moreover maximizes an egalitarian welfare
measure among all truthful and position oblivious mechanisms. On the other hand, we
demonstrate that the maximum Nash welfare solution is truthful for two agents but not in
general. Our results assume that mechanisms can block each agent from accessing parts that
the agent does not claim to desire; we provide an impossibility result when blocking is not
allowed.

Chapter 2

Preliminaries

2.1 Cake Cutting Model

Let [k] := {1, 2, . . . , k}. The model includes a set of agents denoted by N = [n] and a
heterogeneous divisible good C (or cake) represented by the normalized interval [0, 1]. A
piece of cake is a union of finitely many disjoint intervals. Each agent i 2 N is endowed
with an integrable density function fi : [0, 1] ! R�0, which captures how the agent values
di�erent parts of the cake. Given a piece of cake S ✓ [0, 1], agent i’s value over S is then
defined as ui(S) :=

R
x2S fi(x) dx. Denote by C = (C1, C2, . . . , Cn) the allocation of cake

C such that Ci \ Cj = ;, C =
F

i2N Ci, and agent i gets the piece of cake Ci.

Definition 2.1 (Foley [88], Steinhaus [146], Varian [154]). An allocation C = (C1, . . . , Cn)

is said to satisfy

• envy-freeness (EF) if for any pair of agents i, j 2 N , ui(Ci) � ui(Cj);

• proportionality (PROP) if for each agent i 2 N , ui(Ci) � ui(C)/n.

It is easy to see that envy-freeness implies proportionality when the whole cake is re-
quired to be allocated.

Query Model We adopt the Robertson-Webb (RW) query model [138], a standard model
in cake cutting, to access agents’ density functions for the cake. In this model, an algorithm
is allowed to interact with the agents via the following two types of queries:

• E���i(x, y) asks agent i to evaluate the interval [x, y] and returns the value ui([x, y]);

• C��i(x,↵) asks agent i to return the leftmost point y such that ui([x, y]) = ↵, or state
that no such point exists.

Structural Density Functions In some other cases, we do not use the RW model, but
rather assume that the density functions are structural and provided to us in full information.

Definition 2.2. A density function f is said to be

5

6 CHAPTER 2. PRELIMINARIES

• piecewise linear (resp., piecewise constant) if interval [0, 1] can be partitioned into a
finite number of intervals such that f is linear (resp., constant) on each interval;

• piecewise uniform if f is piecewise constant and moreover f takes on some constant
c 2 R>0 across all desired intervals and zero for all undesired parts.

As is clear from the definition, piecewise linear function generalizes both piecewise
uniform and piecewise constant functions, each of which has been considered in several
previous fair division works [31, 34, 75].

Homogeneous Cake In some examples or sections, we focus on a special case where the
cake to be allocated is homogeneous.1 It means that every agent values all pieces of equal
size the same.

2.2 Indivisible Goods Setting

Problem Instance Denote by N = [n] the set of n agents and M = [m] the set of m
indivisible goods. A bundle is a subset of M . Each agent i 2 N is endowed with a utility
function ui : 2M ! R�0 such that ui(;) = 0. For simplicity, we will write ui(g) to denote
ui({g}). A utility function u is said to be

• monotonic if u(M 00) u(M 0) for any bundles M 00 ✓M 0 ✓M ;

• additive if u(M 0) =
P

g2M 0 u(g) for any bundle M 0 ✓M .

Let U = {u1, u2, . . . , un} be the utility profile of the agents. We refer to a setting with
agents, indivisible goods, and utility functions as an instance, denoted by hN,M,Ui. An
allocation M = (M1,M2, . . . ,Mn) is a partition of M into n bundles such that agent i
receives bundle Mi; note that Mi might be empty.

Fairness Notion We are now ready to define fairness properties that we consider in this
dissertation. To begin, we consider several relaxations of the envy-freeness notion.

Definition 2.3 (Budish [65], Caragiannis et al. [69], Lipton et al. [113]). An allocation M
is said to satisfy

• envy-freeness up to k goods (EFk), for a given non-negative integer k, if for every pair
of agents i, j 2 N , there exists a (possibly empty) bundle M 0 ✓ Mj with |M 0| k

such that ui(Mi) � ui(Mj \M 0);

• envy-freeness up to any good (EFX) if for any pair of agents i, j 2 N and any good
g 2Mj , ui(Mi) � ui(Mj \ {g}).

1An even more restricted case is when the cake is valued the same to all agents. The canonical example
of the divisible goods of this special case is money.

2.2. INDIVISIBLE GOODS SETTING 7

Algorithm 1: Round-Robin Algorithm
1 Arrange the agents in some arbitrary order.
2 Let the next agent in the order choose her favourite good from the remaining goods.

An EF0 allocation is said to be envy-free. It follows immediately from the definition that
envy-freeness implies EFX, which in turn imposes a stronger requirement than EF1. If we
do not have to allocate all of the goods, achieving envy-freeness and all of its relaxations is
trivial, e.g., by simply not allocating any good. Hence, we will assume that all goods must
be allocated when we discuss envy-freeness and its relaxations. In the context of indivisible
goods allocation, the gold standard of fairness—envy-freeness—cannot be guaranteed in
the simple instance with (at least) two agents and a single valuable good to be divided.
In contrast, an EF1 allocation exists for any number of agents with arbitrary monotonic
utilities [113]. For EFX, the existence question is still unresolved even if agents have additive
utilities [69, 135].

The round-robin algorithm, which is described in Algorithm 1, always computes an EF1
allocation (see for example [69]).

Definition 2.4. An allocation is said to satisfy round-robin if it is the result of applying the
algorithm with some ordering of the agents.2

Our next fairness notion is the maximin share guarantee proposed by Budish [65].

Definition 2.5. Given a set of goods M and the number of agents n, the maximin share
(MMS) of agent i is defined as

MMSi(n,M) = max
(P1,P2,...,Pn)

min
j2[n]

ui(Pj),

where the maximum is taken over all partitions (P1, P2, . . . , Pn) of M . A partition for which
the maximum is attained is called an MMS partition for agent i.

For notational convenience, we will simply write MMSi when parameters n and M are
clear from the context.

Definition 2.6 (↵-MMS). An allocation M is said to satisfy the ↵-approximate maximin
share guarantee (↵-MMS), for some ↵ 2 [0, 1], if for every agent i 2 N ,

ui(Mi) � ↵ · MMSi(n,M).

We say a 1-MMS allocation satisfies the maximin share guarantee and write MMS as a
shorthand for 1-MMS.

2In case there are ties between goods, we may assume worst-case tie breaking, since it is possible to obtain
an instance with infinitesimal di�erence in welfare and any desired tie-breaking between goods by slightly
perturbing the utilities.

8 CHAPTER 2. PRELIMINARIES

We now define balancedness, which means that the goods are spread out among the
agents as much as possible. Balancedness and similar cardinality constraints have been
considered in recent work [46]. In addition to satisfying EF1, an allocation produced by the
round-robin algorithm is also balanced.

Definition 2.7. An allocation is said to be balanced if ||Mi|� |Mj|| 1 for any i, j 2 N .

Welfare Maximizer and Economic E�ciency Now, we define a number of welfare max-
imizers considered in this dissertation.

Definition 2.8. The (utilitarian) social welfare of an allocation M is defined as SW(M) :=
Pn

i=1 ui(Mi). The optimal social welfare for an instance I = hN,M,Ui, denoted by
OPT(I), is the maximum social welfare over all allocations for this instance.

Definition 2.9 (MNW). The Nash welfare of an allocation M is defined as
Q

i2N ui(Mi).
An allocation is said to be a maximum Nash welfare (MNW) allocation if it has the maximum
Nash welfare among all allocations.3

Definition 2.10 (MEW). The egalitarian welfare of an allocation M is mini2N ui(Mi).
An allocation is said to be a maximum egalitarian welfare (MEW) allocation if it has the
maximum egalitarian welfare among all allocations.

Definition 2.11. An allocation is said to be leximin if it maximizes the lowest utility (i.e., the
egalitarian welfare), and, among all such allocations, maximizes the second lowest utility,
and so on.

Finally, we define Pareto optimality, a fundamental property in the context of resource
allocation.

Definition 2.12 (PO). Given an allocation M, another allocation (M 0
1,M

0
2, . . . ,M

0
n) is said

to be a Pareto improvement if ui(M 0
i) � ui(Mi) for all agents i 2 [n], with at least one

strict inequality. An allocation is said to be Pareto optimal (PO) if it does not admit a Pareto
improvement.

Caragiannis et al. [69] showed that an MNW allocation always satisfies EF1 and Pareto
optimality. It is clear from the definition that any leximin allocation is Pareto optimal and
maximizes egalitarian welfare. The problem of computing an MEW allocation has been
studied by Bezáková and Dani [42] and Bansal and Sviridenko [26]. Leximin allocations
were studied by Bogomolnaia and Moulin [47] and shown to be applicable in practice by
Kurokawa et al. [107].

3In the case where the maximum Nash welfare is 0, an allocation is an MNW allocation if it gives positive
utility to a set of agents of maximal size and moreover maximizes the product of utilities of the agents in that
set.

2.3. MIXED GOODS MODEL 9

2.3 Mixed Goods Model

In this section, we consider a resource allocation setting with both divisible and indivisible
goods (mixed goods for short) to be allocated. Denote by N = [n] the set of n agents,
M = [m] the set of m indivisible goods, and {D1, D2, . . . , D`} the set of ` cakes. Since the
fairness notions we investigate in this dissertation do not distinguish pieces from di�erent
cakes, without loss of generality, we assume that each cake Di is represented by the interval
⇥
i�1
` , i

`

⇤
and use a single cake C = [0, 1] to represent the union of all cakes.4 An allocation

of the mixed goods is denoted by A = (A1, A2, . . . , An) where Ai = Mi [Ci is the bundle
allocated to agent i. Agent i’s utility for the allocation is then defined as ui(Ai) := ui(Mi)+

ui(Ci).
Now, we are ready to define the fairness notions considered for mixed goods. Neither

envy-freeness nor EF1 alone is a suitable definition; thus, we introduce the following fairness
notion.

Definition 2.13 (EFM). An allocation A is said to satisfy envy-freeness for mixed goods
(EFM) if for any pair of agents i, j 2 N ,

• if agent j’s bundle consists of only indivisible goods, there exists g 2 Aj such that
ui(Ai) � ui(Aj \ {g});

• otherwise, ui(Ai) � ui(Aj).

It is easy to see that when the goods are all divisible, EFM reduces to envy-freeness
and when the goods are all indivisible, EFM reduces to EF1. Therefore, EFM naturally
generalizes both envy-freeness and EF1 to the mixed goods setting.

Next, we define a relaxation of the EFM notion. Our definition only relaxes the envy-free
condition when the bundle contains some divisible goods; the EF1 condition is not relaxed.

Definition 2.14 (✏-EFM). An allocation A is said to satisfy ✏-envy-freeness for mixed goods
(✏-EFM) if for any pair of agents i, j 2 N ,

• if agent j’s bundle consists of only indivisible goods, there exists g 2 Aj such that
ui(Ai) � ui(Aj \ {g});

• otherwise, ui(Ai) � ui(Aj)� ✏.

We now define the maximin share guarantee (Definition 2.5) and its relaxations in the
mixed goods setting.

Definition 2.15. Let ⇧k(M [C) be the set of k-partitions of M [C. Define the k-maximin
share of agent i as

MMSi(k,M [C) = max
(P1,P2,...,Pk)2⇧k(M[C)

min
j2[k]

ui(Pj).

4We assume that agents’ valuation functions over the cakes are non-atomic, and thus we can view two
consecutive cakes as disjoint even if they intersect at one boundary point.

10 CHAPTER 2. PRELIMINARIES

The maximin share (MMS) of agent i is MMSi(n,M [C). Every partition in

arg max
(P1,P2,...,Pn)2⇧n(M[C)

min
j2[n]

ui(Pj)

is called an MMS partition for agent i.

Again, when parameters n, M , and C are clear from the context, we will simply write
MMSi as agent i’s maximin share for convenience.

Definition 2.16 (↵-MMS). An allocation A is said to satisfy the ↵-approximate maximin
share guarantee (↵-MMS), for some ↵ 2 [0, 1], if for every agent i 2 N ,

ui(Ai) � ↵ · MMSi(n,M [C).

Part I

Axiomatic Study of Fairness for Mixed
Goods

11

Chapter 3

Introduction

Fair division concerns the problem of allocating scarce resources among interested agents,
with the objective of finding an allocation that is fair to all agents involved. Initiated by Stein-
haus [146], the study of fair division has since been attracting interest from various disci-
plines for decades, including among others, mathematics, politics, economics, and computer
science [55, 60, 82, 127, 128, 134, 138, 139, 153, 160]. Moreover, due to its subjective na-
ture, a plethora of fairness notions have been proposed and investigated in di�erent resource
allocation scenarios. Two of the most prominent fairness notions in the literature are pro-
portionality and envy-freeness, introduced by Steinhaus [146] and Foley [88], respectively.
An allocation is said to be proportional if every agent receives a bundle which is worth at
least 1/n of her value for the entire set of goods, and envy-free if each agent weakly prefers
her own bundle to any other bundle in the allocation. It follows from the definition that when
goods are all allocated, envy-freeness implies proportionality.

The literature of fair division can be divided into two classes, categorized by the type
of the resources to be allocated. The first class assumes the resources to be heterogeneous
and infinitely divisible. The corresponding problem is commonly known as cake cutting,
with the cake serving as a metaphor for the heterogeneous divisible resource. An envy-free
allocation with divisible resources always exists (see, e.g., Alon [4]) and can be found via a
discrete and bounded protocol [15]; a proportional allocation can always be found e�ciently
for any number of agents over any divisible good [146].

The second class considers indivisible resource allocation, i.e., fair division of hetero-
geneous and indivisible resources. When goods are indivisible, neither envy-freeness nor
proportionality can always be fulfilled, e.g., when two agents try to divide a single valuable
good. In order to circumvent this issue, relaxations of both notions have been studied. Envy-
freeness is often relaxed to envy-freeness up to one good (EF1) [65, 113], which requires
that it is possible to eliminate any envy one agent has towards another agent by removing
some good from the latter’s bundle. An EF1 allocation exists for any number of agents with
arbitrary monotonic utilities and can be found e�ciently [113]. Likewise, Budish [65] in-
troduced a natural alternative to the proportionality that also works for indivisible goods,
known as the maximin share guarantee. In that definition, the maximin share (MMS) of an

13

14 CHAPTER 3. INTRODUCTION

agent is defined as the largest value that the agent can guarantee for herself if she is allowed
to partition goods into n bundles and always receives the least desirable bundle. An alloca-
tion that gives every agent her maximin share—said to satisfy the MMS guarantee—does
not always exist when there are at least three agents and utilities are additive, but a constant
multiplicative approximation can be obtained [108].1

The vast majority of the fair division literature assumes that the resources either are
completely divisible, or consist of only indivisible goods.2 This is, however, not always the
case in many real-world scenarios. In a divorce settlement or an inheritance division, for
instance, the goods to be divided may contain divisible goods such as land and money, as
well as indivisible goods like jewellery, houses, artworks, and many other common items.
What fairness notion should one adopt when allocating mixed types of resources?

Although both envy-freeness and EF1 work well in their respective settings, neither can
be directly applied to the mixed goods model. On the one hand, an envy-free allocation
may not exist, when, for example, all goods are indivisible. On the other hand, the EF1
notion, when interpreted as that each agent does not envy another agent after removing
one indivisible good from the latter agent’s bundle, may also produce unfair allocations.
Consider the example where an indivisible good and a cake are both equally valued by two
agents; dividing the cake in half and then giving the indivisible good to one of the agents
is EF1 but arguably unfair. Thus, dividing mixed types of resources calls for new fairness
notions that could unify envy-freeness and EF1 together in a natural and non-trivial way.
In this dissertation, we provide such a treatment. Specifically, in Chapter 4, we introduce
and study a notion called envy-freeness for mixed goods (EFM), which is a generalization
of envy-freeness and EF1 in the mixed goods setting.

EFM is an envy-based fairness notion; we then turn our attention to a fair-share-based
notion and focus on investigating the maximin share guarantee. While previous works has
been mainly studying the maximin share guarantee in the context of indivisible resource
allocation (see Section 3.1), it is actually a very well-defined notion when dividing mixed
types of resources. Comparing with EFM studied in Chapter 4, the maximin share guarantee
can be directly applied to the mixed goods setting without any modification.3 This allows
us to compare the results of MMS for mixed goods directly to those for indivisible goods.
To be more specific, in Chapter 5, we study the existence, approximation, and computation
of maximin share guarantee with mixed goods.

1An MMS allocation always exists when there are two agents [49].
2A notable exception to this is the work of Rubchinsky [140], who considered the fair division problem

between two agents with both indivisible and homogeneous divisible items, and introduced three fairness
notions with computationally e�cient algorithms for finding them.

3With only divisible goods, envy-freeness implies proportionality but not vice versa. With only indivisible
goods, the notions of EF1 and MMS do not imply each other [69]. Since EFM generalizes both envy-freeness
and EF1 to the setting of mixed goods and EFM reduces to EF1 with only indivisible goods, it is obvious that
neither EFM nor MMS implies the other.

3.1. RELATED WORK 15

3.1 Related Work

As mentioned earlier, most previous works in fair division are from two categories based on
whether the resources to be allocated are divisible or indivisible.

Cake Cutting When the resources are divisible, the existence of an envy-free allocation is
guaranteed [79, 111], even with only n� 1 cuts [147, 148]. Brams and Taylor [54] gave the
first finite (but unbounded) envy-free protocol for any number of agents. Recently, Aziz and
Mackenzie [16] gave the first bounded protocol for computing an envy-free allocation with
four agents and their follow-up work extended the result to any number of agents [15]. Be-
sides envy-freeness, other classic fairness notions include proportionality and equitability,
both of which have been studied extensively [70, 79–81, 83, 136].

Indivisible Resource Allocation When the resources are indivisible, none of the afore-
mentioned fairness notions is guaranteed to exist, and thus relaxations have been considered.
Among other notions, these include envy-freeness up to one good (EF1), envy-freeness up
to any good (EFX), and maximin share (MMS) guarantee [65, 69, 113]; see Chapter 2 for
their definitions. The existence of EFX allocations is still open [135], except for several
special cases [8, 39, 68, 72–74, 115, 132]. That said, we can further strengthen our EFM
notion in the sense that agents use the EFX condition to compare their bundles to an agent
who only receives indivisible goods; see our discussion in Section 4.3.

The MMS guarantee nicely captures the local measure of fairness even when the goods
to be allocated are indivisible. Since the seminal work of Kurokawa et al. [108], many subse-
quent works have been carried out on the improvements of MMS approximation guarantee,
design of simpler algorithms and so on when allocating indivisible goods [7, 27, 87, 91–
93].4 The MMS guarantee has also been adopted as the fairness solution concept in several
practical applications [65, 95].

Slightly deviating from this line of work, MMS allocations of indivisible resources have
also been extensively studied in a variety of fair division settings, including (but not limited
to) for agents with unequal entitlements [86] or in di�erent groups [149], for goods forming
an undirected graph [51, 114], for allocations under matroid constraints [96] or in conjunc-
tion with economic e�ciency [102], as well as in the context of chore division, where chores
refer to negatively valued items [19, 22, 23, 101].

In addition, several works studied fair division with the assumption that (indivisible)
resources can be shared among agents. For instance, the adjusted-winner (AW) procedure
ensures that at most one good must be split in a fair and (economically) e�cient division
between two agents [55]. Focus has also been given to obtain a fair and e�cient division with
minimum number of objects shared between two or more agents [126, 141]. All of the works
discussed in this paragraph implicitly assumed that the indivisible items are homogeneous.

4The approximation guarantee for MMS was improved to 3/4 by Ghodsi et al. [93] and the currently
best-known ratio is 3

4 + 1
12n due to Garg and Taki [91].

16 CHAPTER 3. INTRODUCTION

Money Involved A related line of research incorporates money into the fair division of
indivisible goods, with the goal of finding envy-free allocations [3, 13, 64, 66, 94, 97, 105,
120, 122]. In a recent work, Halpern and Shah [97] bounded the amount of money needed
to achieve envy-freeness for agents with additive valuations, assuming that the value of each
agent for each good is at most 1. Their result were further improved by Brustle et al. [64].
Aziz [13] then studied the problem of using monetary transfers to achieve envy-freeness
and equitability simultaneously. On the other hand, Caragiannis and Ioannidis [66] studied
the optimization problem of computing the minimum amount of money needed to obtain
envy-freeness given an indivisible instance and showed both approximation and hardness
results. Then, following the work of Halpern and Shah [97], but in a more restricted setting
where agents have submodular dichotomous valuations,5 Goko et al. [94] designed a truthful
mechanism that achieves envy-freeness by subsidizing each agent with at most 1. This part of
the dissertation (Chapters 4 and 5) and these works indeed share some similarities in that we
consider a mixed goods model which contains a cake and money can be viewed as a special
type of cake which is homogeneous and valued the same across all agents. However, a major
di�erence between Part I and theirs is that we have di�erent objectives, which also makes
our results and theirs are not comparable. Briefly speaking, those works focused on finding
envy-free allocations with the help of a su�cient amount of money, which is di�erent from
our goal in the sense that our method could also be used even in cases where the money is
insu�cient. Put di�erently, those works aim to determine the amount of money needed to be
added to the set of indivisible goods such that an envy-free allocation can be obtained; their
results, however, do not specify what to do when there is not enough money as they required.
In this part of the dissertation, we focus on instances in which the amount of indivisible
goods and cake are both fixed, and regardless of whether the cake is enough to guarantee an
envy-free (resp., MMS) allocation, we aim to find an EFM allocation in Chapter 4 (resp., a
reasonably fair allocation with MMS approximation guarantee in Chapter 5).

Also related is rent division; see, for example, [3, 9, 10, 90, 137, 148, 152, 155] and
references therein for an overview. Its cardinal utility version can be viewed as a special
case of the mixed setting where one wants to allocate (indivisible) rooms and (divisible)
rent among agents.

Mixed Resources Model After the publication of our work [36], Bhaskar et al. [43] showed
that EFM allocations always exist in a setting where we divide doubly monotone indivisible
items6 and a bad cake (i.e., non-positively valued heterogeneous divisible item) as well as
in some special cases of the setting where indivisible chores and a cake are to be divided.

5A utility function u is said to be dichotomous if the marginal value of any good is either 0 or 1; submodular
if u(S [{g}) � u(S) � u(T [{g}) � u(T) for every pair of bundles S ✓ T ✓ m and every good g 2 M ;
submodular dichotomous if it is both submodular and dichotomous.

6Each agent i can partition the set of items into goods and chores, that is, adding a good does not decrease
the agent’s utility for her bundle and adding a chore does not increase the agent’s utility for her bundle.

Chapter 4

Envy-Freeness for Mixed Goods †

4.1 Introduction

While neither envy-freeness nor EF1 is a suitable fairness notion in the mixed goods setting,
a possibly tempting solution is to divide the divisible and indivisible resources using envy-
free and EF1 protocols separately and independently, and then combine the two allocations
together. This approach, however, also has problems. Consider the example where two
agents need to divide a cake and an indivisible good. EF1 requires to allocate the indivisible
good to one of the agents, say agent 1. However, if we then divide the cake using an arbitrary
envy-free allocation, the overall allocation is arguably unfair to agent 2. As a matter of fact, if
the whole cake is valued less than the indivisible good, it would make more sense to allocate
the entire cake to agent 2. When the cake is valued more than the indivisible good, it is still
a fairer solution to allocate more cake to agent 2 in order to compensate her disadvantage in
the indivisible goods allocation. Our discussion demonstrates that it is not straightforward
to generalize envy-freeness and EF1 to the mixed goods setting.

In this chapter, we introduce and study the notion of envy-freeness for mixed goods
(EFM), which naturally combines envy-freeness and EF1 together in and works well for
the mixed goods model defined in Section 2.3. Intuitively, EFM requires that for each agent,
if her bundle consists of only indivisible goods, other agents will compare their bundles to
hers using the EF1 criterion; however, if her bundle contains any positive amount of divisible
resources, other agents will compare their bundles to hers using the stricter envy-free con-
dition. Our definition of EFM generalizes both envy-freeness and EF1 to the mixed goods
setting and strikes a natural balance between them.

In Section 4.2, we show that with mixed goods, an EFM allocation always exists for any
number of agents with additive valuations. Our proof is constructive and gives an algorithm
for computing an EFM allocation. The algorithm requires an oracle to compute a perfect
allocation in cake cutting and can find an EFM allocation in a polynomial number of steps.
In addition, in Section 4.3, we present two algorithms that could compute an EFM allocation
for two special cases without using the oracle: (1) two agents with general additive valuations

†This chapter has been published in a paper by Bei, Li, Liu, Liu, and Lu [36].

17

18 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

in the RW model, and (2) any number of agents with piecewise linear valuations for the cake.
While it is still unclear to us whether in general an EFM allocation can be computed

in a finite number of steps in the RW model, in Section 4.4, we turn our attention to ✏-
envy-freeness for mixed goods (✏-EFM), a relaxation of the EFM notion. We devise an
algorithm to compute an ✏-EFM allocation in the RW model with running time polynomial
in the number of agents n, the number of indivisible goods m, and 1/✏ as well as with query
complexity polynomial in n and 1/✏. We note that this algorithm does not require the perfect
allocation oracle. This result is appealing in particular due to its polynomial running time
and query complexity. A bounded exact EFM protocol, even if exists, is likely to require
a large number of queries and cuts as in the special case of cake cutting, EFM reduces to
envy-freeness, for which the best-known protocol of Aziz and Mackenzie [15] has a very
high query complexity, i.e., a tower of exponents of n. Thus, if one is willing to allow a
small margin of errors, such an allocation could be found much more e�ciently.

Last but not least, we discuss EFM in conjunction with economic e�ciency (Section 4.5).
In particular, we show that EFM and PO are incompatible. Thus, we propose a weaker ver-
sion of EFM and discuss the possibilities and di�culties in combining it with PO.

4.2 Existence

Although EFM naturally generalizes both EF and EF1, it is not straightforward if an EFM
allocation would always exist with mixed goods. In this section, we show via a constructive
algorithm that with mixed goods and any number of agents, an EFM allocation always exists.

We begin with the following concepts which will be helpful for our algorithm and proofs.

Perfect Allocation Intuitively, a perfect allocation in cake cutting divides the cake into k

pieces such that every agent in N values these k pieces equally.

Definition 4.1 (Perfect allocation). A partition C = (C1, C2, . . . , Ck) of cake C is said to
be perfect if for all i 2 N, j 2 [k], we have ui(Cj) = ui(C)/k.

Alon [4] showed that a perfect allocation always exists for any number of agents and any
k. We will assume that our algorithm is equipped with the P������A����(C, k,N) oracle
which returns us a perfect allocation for any k and cake C among all of the agents in N .

Envy Graph We use an envy graph to capture envy relations between the agents.

Definition 4.2 (Envy graph). Given an allocation A, its corresponding envy graph G =

(N,Eenvy [Eeq) is a directed graph, where each vertex represents an agent, and Eenvy and
Eeq consist of the following two types of edges, respectively:

• Envy edge: i ENVY���! j if ui(Ai) < ui(Aj);

• Equality edge: i EQ�! j if ui(Ai) = ui(Aj).

4.2. EXISTENCE 19

A cycle in an envy graph is called an envy cycle if it contains at least one envy edge. The
concepts of envy edge and equality edge were also used in [105, 113].

We next define an addable set, which corresponds to a specific set of agents.

Definition 4.3 (Addable set). Given an envy graph, a non-empty set of agents S ✓ N forms
an addable set if

• there is no envy edge between any pair of agents in S;

• there exists neither an envy edge nor an equality edge from N \ S to S.

Moreover, an addable set S ✓ N is called a maximal addable set if there does not exist
any other addable set S 0 ✓ N such that S (S 0. The following lemma shows the uniqueness
of the maximal addable set in an envy graph.

Lemma 4.4. Given an envy graph, the maximal addable set, if exists, is unique. Moreover,
we can find it or decide that none exists in O(n3) time.

Proof. Suppose for contradiction that there exist two distinct maximal addable sets S1 and
S2 in the given envy graph. First, there exists neither an envy edge nor an equality edge from
N \(S1[S2) to S1[S2 since, otherwise, either S1 or S2 is not an addable set. We next argue
that there is no envy edge between agents in S1 [S2. Clearly, according to Definition 4.3,
there is no envy edge within each of S1 and S2. The envy edges between S1 and S2 also
cannot exist because there are no envy edges coming from outside of S1 or S2 into any of
them. Thus, S1 [S2 is also an addable set, contradicting the maximality of S1 and S2.

Now, we show how to find the unique maximal addable set or decide its non-existence in
O(n3) time: for each j which has an incoming envy edge, let Rj be the collection of vertices
(including j) that are reachable by j via the union of envy edges and equality edges, and let
S = N \

S
j Rj . We will show that an addable set does not exist in the envy graph if S = ;.

Otherwise, S is the unique maximal addable set. First, S is an addable set because any
agent in S does not have any incoming envy edge and is not reachable via the union of envy
edges and equality edges from any other agent with an incoming envy edge. In addition, S
is maximal because any agent in

S
j Rj cannot be in any addable set. Such S can be found

in O(n3) time because it takes O(n) time to check if an agent has an incoming edge, and for
any agent j who has an incoming envy edge, it then takes O(n2) time to construct Rj via,
for example, breadth-first search (BFS).

Intuitively, agents in addable set S can be allocated some cake without creating new envy
because each agent in N \ S values her own bundle strictly more than the bundles of agents
in S. Our next result characterizes the relation between the addable set and the envy cycle.

Lemma 4.5. Any envy graph G = (N,Eenvy [Eeq) that does not have any envy cycle must
have an addable set.

20 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

aA1 b A2

c A3dA4

ENVY

EQ

ENVY

EQ

(a) Envy graph G.

vac vcd

(b) The corresponding G
0.

Figure 4.1: Figure 4.1a shows an envy graph G with four vertices (i.e., agents) a, b, c, d.
The bundle each agent gets is labelled with A1, A2, A3, A4. We show in Figure 4.1b its
corresponding G0. Here, G has an envy cycle (involving vertices a, b, c) but no addable set.

aA3 b A1

c A2dA4

EQ

ENVY

EQ

(a) Envy graph G.

vcd

(b) The corresponding G
0.

Figure 4.2: After rotating the bundles along the envy cycle in Figure 4.1a, we obtain the envy
graph in Figure 4.2a. The corresponding G0 is then shown in Figure 4.2b. In this example,
G has addable sets {b}, {b, c} and {a, b, c} but no envy cycle.

Proof. We assume without loss of generality thatEenvy 6= ;, otherwiseN itself is an addable
set. Now, we construct graph G0 = (N 0, E 0) from G as follows. Each envy edge i

ENVY���! j

in G corresponds to a vertex vij in G0. For two envy edges i ENVY���! j and i0
ENVY���! j0 in G,

if there exists a path from j to i0, we construct an edge vij ! vi0j0 in G0. Note that, if there
is an envy edge i

ENVY���! j and a path from j to i in G, there will be a self-loop vij ! vij in
G0. We illustrate this transformation using two examples in Figures 4.1 and 4.2.

A cycle in G0 implies an envy cycle in G, and thus by the assumption that there is no
envy cycle in G, G0 must be acyclic. Then there must exist a vertex vij 2 N 0 which is not
reachable by any other vertices in G0. Because vij corresponds to the envy edge i

ENVY���! j

in G and vij cannot be reached by any vertices in G0, the vertex i is also not reachable by
any j0 which is pointed by an envy edge. We note that, however, vertex i may be reachable
by other vertices via only equality edges. Thus, we need to not only include agent i in the
addable set but also those agents who are able to reach i via equality edges.

Let S be the set containing agent i and all other agents who can reach i in G via equality
edges. We will show that S is an addable set. First, S is non-empty as it contains at least
agent i. Second, by our construction, there is no envy edge between agents in S. Third,
recall that agent i is not reachable by any j0 which is pointed by an envy edge; thus, S is
also not pointed by any envy edge. Last, S is also not pointed by any equality edge by our
construction of S. Therefore, according to Definition 4.3, S must be an addable set.

4.2. EXISTENCE 21

Algorithm 2: EFM Algorithm
Input: Agents N , mixed goods M [C, as well as utility and density functions.

1 Find an arbitrary EF1 allocation (A1, A2, . . . , An) of M to n agents.
2 Construct an envy graph G = (N,Eenvy [Eeq) accordingly.
3 while C 6= ; do // Allocate divisible goods
4 if there exists an addable set in G then // Cake-adding phase
5 Let S be the maximal addable set.
6 if S = N then
7 Find an envy-free allocation (C1, C2, . . . , Cn) of C.
8 C ;
9 Add Ci to bundle Ai for all i 2 N .

10 else
11 �i minj2S(ui(Ai)� ui(Aj)) for each i 2 N \ S.
12 if ui(C) |S| · �i holds for each i 2 N \ S then
13 C 0 C,C ;
14 else
15 Suppose w.l.o.g. that C = [a, b]. For each agent i 2 N \ S, if

ui([a, b]) � |S| · �i, let xi be a point such that ui([a, xi]) = |S| · �i;
otherwise, let xi = b.

16 i⇤ argmini2N\S xi

17 C 0 [a, xi⇤], C C \ C 0

18 Let (C1, C2, . . . , Ck) = P������A����(C 0, k, N) where k = |S|.
19 Add Ci to the bundle of the i-th agent in S.
20 Update envy graph G accordingly.

21 else // Envy-cycle-elimination phase
22 Let T be an envy cycle in envy graph G.
23 For each agent j 2 T , give her bundle to agent i who points to agent j in T .
24 Update envy graph G accordingly.

25 return (A1, A2, . . . , An)

4.2.1 The Algorithm

The pseudocode to compute an EFM allocation is presented as Algorithm 2. In general,
our algorithm always maintains a partial allocation that is EFM. Then, we repeatedly and
carefully add resources to the partial allocation, until all resources are allocated. We start
with an EF1 allocation of only indivisible goods to all agents in line 1, and construct the
corresponding envy graph in line 2. Then, our algorithm executes in rounds (lines 3 to 24).
In each round, we try to distribute some cake to the partial allocation while ensuring the
partial allocation to be EFM. Such a distribution needs to be done carefully because once
an agent is allocated with a positive amount of cake, the fairness condition with regard to
her bundle changes from EF1 to envy-freeness, which is more demanding. We repeat the
process until the whole cake is allocated.

In each round of Algorithm 2, depending on whether there is an addable set that can
be given some cake in line 4, we execute either an cake-adding phase (lines 4 to 20) or an
envy-cycle-elimination phase (lines 21 to 24).

22 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

• In the cake-adding phase, we have a maximal addable set S. By its definition, each
agent in N \ S values her own bundle strictly more than the bundles of agents in
S. Thus there is room to allocate some cake C 0 to agents in S. We carefully select
C 0 to be allocated to S such that it does not create any new envy among the agents.
To achieve this, we choose a piece of cake C 0 ✓ C to be perfectly allocated to S

in lines 11 to 17 so that no agent in N will envy agents in S after distributing C 0 in
lines 18 and 19. More specifically, for each agent i 2 N \ S, we determine in line 11
the largest value �i to be added to any agent in S such that i would still not envy any
agent in S. Then, the way we decide xi⇤ in lines 16 and 17 ensures that for all agents
i 2 N \ S, vi([a, xi⇤]) |S| · �i. Next, in line 18, cake C 0 = [a, xi⇤] is divided into
|S| pieces that are valued equally by all agents in N . This is to ensure that no agent
i 2 N \ S values any piece more than �i.

• In the envy-cycle-elimination phase, i.e., when there does not exist any addable set,
we show that in this case there must exist an envy cycle T in the current envy graph.
We can then apply the envy-cycle-elimination technique to reduce some existing envy
from the allocation by rearranging the bundles along T . More specifically, for each
agent j 2 T , we give agent j’s bundle to agent i who points to her in T (line 23).

When all goods are indivisible, our algorithm performs lines 1 and 2 and terminates with
an EF1 allocation (which is also EFM). When the whole good is a cake, the algorithm goes
directly to line 7 and ends with an envy-free allocation of the cake, which is again EFM.

4.2.2 Analysis

Our main result for the EFM allocation is as follows:

Theorem 4.6. An EFM allocation always exists for any number of agents with additive
valuations and can be found by Algorithm 2 in polynomial time with O(n4) Robertson-Webb
queries and O(n3) calls to the P������A���� oracle.

Invariants

To prove Theorem 4.6, we first show that the following invariants are maintained by Algo-
rithm 2 during its run.

A1. In each round there is either an addable set for the cake-adding phase or an envy cycle
for the envy-cycle-elimination phase.

A2. The partial allocation is always EFM.

Lemma 4.7. Invariant A1 holds during the algorithm’s run.

Proof. This invariant is implied directly by Lemma 4.5.

4.2. EXISTENCE 23

Lemma 4.8. Invariant A2 holds during the algorithm’s run.

Proof. The partial allocation is clearly EFM after line 1. Then the allocation is updated
in three places in the algorithm: lines 9 and 19 in the cake-adding phase and line 23 in the
envy-cycle-elimination phase. Given a partial allocation that is EFM, we will show that each
of these updates maintains the EFM condition.

First, when we have S = N in line 6, i.e., the addable set S consists of all n agents,
the current envy graph does not contain any envy edge due to the definition of addable set
(Definition 4.3). This implies that current partial allocation actually is envy-free. Because
all valuation functions are additive, adding another envy-free allocation on top of it in line 9
results in an envy-free and, hence, EFM allocation.

We next consider line 19 in the cake-adding phase where a piece of cake is added to
the addable set S. In order to maintain an EFM partial allocation, we need to ensure that
this process does not introduce any new envy towards agents in S. Since we add a perfect
allocation in lines 18 and 19, envy will not emerge among agents in S. We also carefully
choose the amount of cake to be allocated in lines 12 to 17 such that each agent in N \ S

weakly prefers her bundle to any bundles that belong to agents in S. To achieve this, we
choose a piece of cake C 0 ✓ C to be perfectly allocated to S in lines 11 to 17 so that no
agent in N will envy agents in S after distributing C 0 in lines 18 and 19. More specifically,
for each agent i 2 N \ S, we determine in line 11 the largest value �i to be added to any
agent in S such that i would still not envy any agent in S. Then, the way we decide xi⇤ in
lines 16 and 17 ensures that for all agents i 2 N \ S, vi([a, xi⇤]) |S| · �i. Next, in line 18,
cake C 0 = [a, xi⇤] is divided into |S| pieces that are valued equally by all agents in N . This
is to ensure that for any piece of cake Cj allocated to j 2 S, we have ui(Cj) �i for all
i 2 N \ S. Thus, agents in N \ S continues to not envy agents in S in line 19.

Finally, in the envy-cycle-elimination phase, line 23 eliminates envy edges by rearrang-
ing the partial allocation within the envy cycle T . Since each agent in T is weakly better o�,
the partial allocation remains EFM. For agents in N \ T , rearranging the partial allocation
that is EFM will not make EFM infeasible. The conclusion follows.

Correctness

Lemma 4.9. Algorithm 2 always returns an EFM allocation upon termination.

Proof. By Invariant A2, it su�ces to prove that all goods are allocated when Algorithm 2
terminates. All indivisible goods are allocated in line 1. Then the while loop (lines 3 to 24)
terminates only when the cake is also fully allocated, as desired.

Termination and Time Complexity

We use the number of envy edges in the envy graph and the size of the maximal addable set
as a potential function to bound the running time of this algorithm.

24 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

Lemma 4.10. After the algorithm completes a cake-adding phase, the number of envy edges
never increases. In addition, if the piece of cake to be allocated is not the whole remaining
cake, either (a) the number of envy edges strictly decreases, or (b) the size of the maximal
addable set strictly decreases or an addable set no longer exists.

Proof. By Lemma 4.8, the partial allocation is always EFM after a cake-adding phase. In a
cake-adding phase, some positive amount of cake is added to every agent in S. This means
that after this phase, there would never be any envy edge between agents in S or from N \S
to S. The bundles of agents in N \S remains the same, hence the set of edges among agents
in N \ S remains unchanged. Finally, since only agents in S are allocated new resources in
the cake-adding phase, no new envy edge will be introduced from S to N \ S. This proves
the first part of Lemma 4.10.

For the second part, we only study the situation when the piece of cake to be allocated to
agents in S is not the whole remaining cake (lines 14 to 17). Note that the number of envy
edges will never increase after a cake-adding phase as proved above. It su�ces to show that
if the number of envy edges remains unchanged and an addable set still exists, then the size
of the maximal addable set must strictly decrease.

Note that based on how we choose i⇤ in line 16, after the cake-adding phase, at least one
equality edge will be generated in the envy graph from agent i⇤ to some agent j 2 S. Let
G and G0 be the envy graphs before and after the cake-adding phase. Let S and S 0 be the
maximal addable set of G and G0, respectively. In the following we will show that S 0 (S.

We first show S 0 ✓ S. Suppose otherwise, we will show that S [S 0 is also an addable
set in G, which contradicts to the maximality of S. The reasons that S [S 0 is an addable
set in G are as follows.

(i) We have already proved that compared to G, there is no new envy edge in G0. If G
and G0 has the same number of envy edges, they must share exactly the same set of
envy edges. Hence, there will be no envy edge pointing to either S or S 0 in G.

(ii) If there is an equality edge from N \ (S [S 0) to S [S 0 in G, this equality edge cannot
be from N \ (S [S 0) to S because S is an addable set in G. Hence, it must be from
N \ (S [S 0) to S 0 \S. This equality edge remains in G0 because neither the agents in
N \ (S [S 0) nor the agents in S 0 \ S receive any good. However, this is impossible
because S 0 is an addable set in G0. In summary, there cannot be any equality edges
from N \ (S [S 0) to S [S 0 in G.

To further show that S 0 (S, recall that according to our algorithm, at least one equality
edge, from agent i⇤ in N \ S to some agent j 2 S, will be included in G0. It is then clear
that j cannot be in S 0. This concludes the proof.

Lemma 4.11. After the algorithm completes an envy-cycle-elimination phase, the number
of envy edges strictly decreases.

4.2. EXISTENCE 25

Proof. The basic idea of this proof follows from Lipton et al. [113], albeit only strict envy
edges were considered in their context. In the envy-cycle-elimination phase, an envy cycle
T is eliminated by giving agent j’s bundle to agent i for each edge i

ENVY���! j or i EQ�! j in
the cycle. First, this process does not a�ect the bundles of agents in N \ T , hence the set of
envy edges among them remains the same. Next, since we only swap bundles in this phase,
the number of envy edges from N \T to T remains the same. In addition, every agent i 2 T

receives a weakly better bundle, meaning that the number of envy edges from T to N \ T

does not increase. Finally, because T contains at least one envy edge, some agent in T will
receive a strictly better bundle. As a result, although some envy edges between agents in T

may still exist, the total number of envy edges will decrease by at least one.

Lemma 4.12. Algorithm 2 terminates in polynomial time with O(n3) calls to the P�����-
�A���� oracle and O(n4) Robertson-Webb queries.

Proof. We start by analyzing the number of calls to the P������A���� oracle and next focus
on the running time and RW queries.

Calls to the P������A���� Oracle By Invariant A1, each round in Algorithm 2 executes
either a cake-adding phase or an envy-cycle-elimination phase. According to Lemmas 4.10
and 4.11, the number of envy edges never increases. Thus the number of rounds in which
the number of envy edges strictly decreases is bounded by O(n2).

We now upper bound the number of cake-adding phase rounds between any two con-
secutive rounds that decrease the number of envy edges. If the whole remaining cake is
allocated (line 7), P������A����(C, n,N) is called once and then Algorithm 2 terminates.
In the case that a piece of remaining cake is allocated, by Lemma 4.10, the size of the max-
imal addable set strictly decreases or an addable set no longer exists; in the latter case, the
algorithm proceeds to an envy-cycle-elimination phase. Because the size of any addable set
is O(n), it means that the number of cake-adding phase rounds between any two consecutive
rounds that decrease the number of envy edges is O(n).

Finally, it follows that Algorithm 2 executes at most O(n2) ·O(n) = O(n3) cake-adding
phase rounds. Each such round calls the P������A���� oracle once. Algorithm 2 makes
O(n3) calls to the P������A���� oracle.

Polynomial Running Time and RW Queries Note that during the algorithm’s run, we
add resources to a bundle and rotate bundles among agents, but never split a bundle. For
example, the partition of indivisible goods is computed in line 1 and remains the same since
then. To avoid redundant computations, we maintain an n⇥ n array to keep track of ui(Aj)

for all i, j 2 N and update them as necessary.
In line 1, finding an EF1 allocation of indivisible goods can be done in O(mn logm) via

the round-robin algorithm [69]. The implementation details are as follows. We first compute
the sorted order of goods according to each agent’s valuation, which takesO(nm logm) time
overall. Next, in each agent’s turn, we keep looking for the next unallocated good in that

26 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

agent’s sorted list. This step takes O(mn) time in total. Therefore, the overall running time
of the round-robin algorithm is dominated by O(mn logm). Next in line 2, the overall time
to construct the corresponding envy graph is O(n2).

We now consider the while loop. According to Lemma 4.4, we can find the maximal
addable set or decide its non-existence in time O(n3). In the case that we need to perform an
envy-cycle-elimination, an envy cycleT can be found in the following way. Fix an agent i, we
can first spendO(n) time scanning all outgoing edges and ignore those equality edges. Then,
we apply depth-first search (DFS) starting from vertex i. If there is a back edge pointing to
vertex i, then there must be an envy cycle with at least one envy edge, say, e.g., i ENVY���! j,
for some j 2 N . This takes O(n2) time since DFS dominates the time complexity. Since
there are O(n) agents, overall, this step can be implemented in O(n3) time.

In the following, we discuss the steps in each phase at length.

Cake-adding phase When we have S = N satisfied in line 6, we implement an envy-free
allocation by calling P������A����(C, n,N). It takes O(n) time to update the allocation.
Algorithm 2 then terminates.

It takes O(n2) time in line 11 to compute �i for all i 2 N \S. Lines 12 and 15 need O(n)

evaluation and cut queries, respectively. OnceC 0 is determined in line 17, we can makeO(n)

evaluation queries from all n agents over C 0. Because we use a perfect allocation of C 0, we
can directly compute ui(C 0)/|S| for all i 2 N to obtain the value increment of each agent in
the addable set. It then takes O(n2) time to update all agents’ valuations of all bundles after
line 19. After this, updating an envy graph also takes O(n2) time.

Since only this phase requires RW queries, we summarize here that Algorithm 2 makes
O(n4) Robertson-Webb queries in that there are O(n3) cake-adding phases (stated earlier in
this proof) and each such phase needs O(n) RW queries.

Envy-cycle-elimination phase Since we maintain an array as the reference for agents’ val-
uations over the current bundles, we can rotate the bundles as well as update the array and
the envy graph in O(n2) time.

The remaining steps can be implemented in O(n) time. Overall, Algorithm 2 runs in
time O(mn logm + n6), where the n6 term comes from the O(n3) total number of while
loops and O(n3) time to run each loop.

To conclude, the correctness of Theorem 4.6 is directly implied by Lemmas 4.9 and 4.12.

Remark. Algorithm 2 and our analysis actually work for arbitrary monotonic utilities for
indivisible goods as long as utilities for divisible goods are additive.

Bounded Protocol in the RW Model

Even though we showed that Algorithm 2 can produce an EFM allocation, it is not a bounded
protocol in the RW model. This is because our algorithm utilizes an oracle that can compute

4.3. EFM ALLOCATION IN SPECIAL CASE 27

a perfect allocation of any piece of cake. However, while a perfect allocation always exists,
it is known that such an allocation cannot be implemented with a finite number of queries
in the RW model, even if there are only two agents [138]. Whether there exists a bounded
protocol in the RW model to compute an EFM allocation remains a very interesting open
question. Note that the perfect allocation oracle cannot be implemented even with a finite
number of queries, therefore it is even an open question to find a finite EFM protocol.

A natural and tempting approach to get a bounded EFM protocol might be replacing the
perfect allocation (line 18) with an envy-free allocation, for which a bounded protocol in
the RW model is known [15]. Note that doing so would not create any envy within set S.
Then, in order to not create any envy from N \ S to S, we need the total value of the piece
of cake allocated to S to not exceed �i (line 11) for every agent i 2 N \ S. However, when
doing so, we will not be able to quantify the progress of the algorithm like in Lemma 4.10.
Specifically, we can no longer guarantee that either the number of envy edges strictly de-
creases or the size of the maximal addable set strictly decreases. This is because we are
not guaranteed the equality edge from agent i⇤ to some agent j 2 S as we rely on in the
proof of Lemma 4.10. In other words, we cannot show the algorithm will always terminate
in bounded steps. Interestingly, in sharp contrast, we will show in Section 4.4 that an ap-
proximate envy-free protocol, instead of an ✏-perfect protocol, is enough to give an e�cient
✏-EFM algorithm. We will discuss this phenomenon in further detail later in Section 4.4.

4.3 EFM Allocation in Special Case

In this section, we show two special cases where an EFM allocation can be computed in
polynomial time without using the perfect allocation oracle.

4.3.1 Two Agents

We first show that with only two agents, an EFM allocation can be found using a simple cut-
and-choose type of algorithm. We start with a partition (M1,M2) of all indivisible goods
such that agent 1 is EF1 with respect to either bundle. Without loss of generality, we assume
that u1(M1) � u1(M2). Next agent 1 adds the cake into M1 and M2 so that the two bundles
are as close to each other as possible. Note that if u1(M1) > u1(M2 [C), agent 1 would
add all cake to M2. If u1(M1) u1(M2 [C), agent 1 has a way to make the two bundles
equal. We then give agent 2 her preferred bundle and leave to agent 1 the remaining bundle.

Theorem 4.13. Algorithm 3 returns an EFM allocation in the case of two agents in polyno-
mial time.

Proof. It is obvious that all goods are allocated. We next show that the allocation returned is
EFM. Agent 2 is guaranteed to be envy-free (thus EFM) since she gets her preferred bundle
between A1 and A2. In the following, we focus on agent 1. If u1(M1) u1(M2 [C) holds,
agent 1 is indi�erent between bundles A1 and A2, so either A1 or A2 makes her envy-free

28 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

Algorithm 3: EFM Allocation for Two Agents
Input: Agents 1 and 2, mixed goods M [C, as well as utility and density functions.

1 Divide M into M1,M2 such that agent 1 is EF1 with respect to either bundle.
Assume w.l.o.g. that u1(M1) � u1(M2) (otherwise we can swap M1 and M2).

2 if u1(M1) u1(M2 [C) then
3 Let agent 1 partition C into C1, C2 such that u1(M1 [C1) = u1(M2 [C2).
4 Let (A1, A2) = (M1 [C1,M2 [C2).
5 else
6 Let (A1, A2) = (M1,M2 [C).
7 Give agent 2 her preferred bundle among A1, A2 and agent 1 the remaining bundle.

(thus EFM). In the case that u1(M1) > u1(M2[C) holds, agent 1 is envy-free if she receives
A1, and is EFM if she gets A2 because A1 consists of only indivisible goods and there exists
some good g in A1 such that u1(A2) � u1(M2) � u1(A1 \ {g}).

We can run the polynomial-time round-robin algorithm for two copies of agent 1 on the
indivisible goods to obtain the initial partition (M1,M2). The remaining steps only take
constant running time and a constant number of RW queries. The conclusion follows.

A Stronger EFM Notion With two agents, an EFX allocation, in which no agent prefers
the bundle of another agent following the removal of any single good, always exists [132].
This result can be carried over to show the existence of a stronger EFM notion in the mixed
goods setting, in which an agent is EFX towards any agent with only indivisible goods, and
envy-free towards the rest. Such an allocation can be obtained by using an EFX partition
(with respect to agent 1) instead of an EF1 partition in line 1 of Algorithm 3. Moreover,
with any number of agents, whenever an EFX allocation exists,1 we can start with this EFX
allocation in line 1 of Algorithm 2. The cake-adding phase maintains the EFM condition.
Thus Algorithm 2 will produce an allocation with this stronger notion of EFM.

4.3.2 Any Number of Agents with Piecewise Linear Functions

In the second case, we consider an arbitrary number of agents when agents’ valuation func-
tions over the cake are piecewise linear (see Definition 2.2).

The only obstacle in converting Algorithm 2 into a bounded protocol is the implemen-
tation of a perfect allocation oracle for cake cutting. When agents have piecewise linear
functions, Chen et al. [75] showed that a perfect allocation can be computed in polynomial
time. This fact, combined with Theorem 4.6, directly implies the following result.

Corollary 4.14. For any number of agents with piecewise linear density functions over the
cake, an EFM allocation can be computed in polynomial time.

1EFX exists for three agents [72] or n agents with identical valuations [132], but the existence of EFX
remains open for four or more agents with additive valuations.

4.4. RELAXATION: ✏-EFM 29

4.4 Relaxation: ✏-EFM

In this section, we focus on ✏-EFM, a relaxation of the EFM condition. We will also assume
without loss of generality that agents’ utilities are normalized to 1, i.e., ui(M [C) = 1 for
all i 2 N . Despite the computational issues with finding bounded exact EFM protocols,
we will show that there is an e�cient algorithm in the RW model that computes an ✏-EFM
allocation for general density functions with running time polynomial in n, m and 1/✏.

Since the di�culty in finding a bounded EFM protocol in the RW model lies in com-
puting perfect allocations of a cake, it might be tempted to simply replace the exact pro-
cedure with a bounded protocol which returns an ✏-perfect allocation. Here, a partition
(C1, C2, . . . , Ck) of cake C is ✏-perfect if for all i 2 N , j 2 [k],

���ui(Cj)� ui(C)
k

��� ✏.
Although a bounded ✏-perfect protocol exists in the RW model [62, 138], all known proto-
cols have running time exponential in 1/✏.2 It is still an open question to find an ✏-perfect
allocation with both query and time complexity polynomial in 1/✏. Therefore, to design an
e�cient ✏-EFM protocol, extra work needs to be done to circumvent this issue.

We next define a relaxed version of envy-freeness and envy graph.

Definition 4.15 (✏-EF). An allocation A is said to satisfy ✏-envy-freeness (✏-EF) if for all
agents i, j 2 N , ui(Ai) � ui(Aj)� ✏.

Definition 4.16 (✏-envy graph). Given an allocation A and a parameter ✏, the ✏-envy graph
is defined as G(✏) = (N,E✏-envy[E✏-eq), where every vertex represents an agent, and E✏-envy

and E✏-eq consist of the following two types of edges, respectively:

• ✏-envy edge: i ✏-ENVY����! j if ui(Ai) < ui(Aj)� ✏;

• ✏-equality edge: i ✏-EQ��! j if ui(Aj)� ✏ ui(Ai) ui(Aj).

A cycle in an ✏-envy graph is said to be an ✏-envy cycle if it contains at least one ✏-envy
edge. When ✏ = 0, the ✏-envy graph degenerates into the envy graph in Definition 4.2.

4.4.1 The Algorithm

The complete algorithm to compute an ✏-EFM allocation is shown in Algorithm 4. Similarly
to Algorithm 2, our algorithm adds resources to the partial allocation iteratively. We always
maintain the partial allocation to be ✏̂-EFM where ✏̂ is updated increasingly and would never
exceed ✏. This will ensure that the final allocation is ✏-EFM. Like Algorithm 2, starting with
an EF1 allocation of indivisible goods to all agents in line 2, Algorithm 4 then executes in
rounds (lines 4 to 25). Even though each round still executes either a cake-adding phase or
an envy-cycle-elimination phase, the execution details are di�erent from Algorithm 2.

2Brânzei and Nisan [62] showed that an ✏-perfect allocation can be computed in O(n3
/✏) RW queries.

However, although the query complexity is polynomial, the protocol still requires an exponential running time
because it finds the correct partition of the small pieces into bundles via an exhaustive enumeration, of which
no polynomial time algorithm is known.

30 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

Algorithm 4: ✏-EFM Algorithm
Input: Agents N , mixed goods M [C, utility and density functions, and

parameter ✏.
1 ✏̂ ✏

4 , � ✏2

8n
2 Find an arbitrary EF1 allocation (A1, A2, . . . , An) of M to n agents.
3 Construct an ✏̂-envy graph G(✏̂) = (N,E✏̂-envy [E✏̂-eq) accordingly.
4 while C 6= ; do // Allocate divisible goods
5 if there exists an addable set S then // Cake-adding phase
6 if S = N then
7 Let (C1, C2, . . . , Cn) = ✏/4-EFA����(C,N).
8 C ;
9 ✏̂ ✏̂+ ✏/4

10 Add Ci to bundle Ai for all i 2 N .
11 else
12 if maxi2N\S ui(C) ✏̂ then
13 C 0 C, C ;
14 else
15 Suppose w.l.o.g. that C = [a, b]. For all i 2 N \ S, if ui([a, b]) � ✏̂,

let xi be a point such that ui([a, xi]) = ✏̂; otherwise, let xi = b.
16 i⇤ argmini2N\S xi

17 C 0 [a, xi⇤], C C \ C 0

18 Let (C1, C2, . . . , Ck) = �-EFA����(C 0, S) where k = |S|.
19 ✏̂ ✏̂+ �
20 Add Ci to the bundle of the i-th agent in S.
21 Update ✏̂-envy graph G(✏̂) accordingly.

22 else // Envy-cycle-elimination phase
23 Let T be an ✏̂-envy cycle in the ✏̂-envy graph.
24 For each agent j 2 T , give her bundle to agent i who points to agent j in T .
25 Update ✏̂-envy graph G(✏̂) accordingly.

26 return (A1, A2, . . . , An)

• In the cake-adding phase, instead of allocating some cake to an addable set S in a
way that is perfect, we resort to a �-EF allocation, where � will be fixed later in Al-
gorithm 4. In the following, we will utilize an algorithm �-EFA����(C, S) that could
return us a �-EF allocation for any set of agents S and cakeC. Note that, for any ✏̄ > 0,
the algorithm ✏̄-EFA���� can be implemented with both running time and query com-
plexity polynomial in the number of agents involved and 1/✏̄ due to Procaccia [134].
We also update ✏̂ to a larger number, say ✏̂ + �, in order to avoid generating ✏̂-envy
edges due to cake-adding.

• In the envy-cycle-elimination phase, we eliminate an ✏̂-envy cycle, instead of an envy
cycle, by rearranging the current partial allocation.

4.4. RELAXATION: ✏-EFM 31

4.4.2 Analysis

Our main result for the ✏-EFM allocation is as follows:

Theorem 4.17. An ✏-EFM allocation can be found by Algorithm 4 with running timeO(n4/✏+

mn logm),O(n3/✏)Robertson-Webb queries, andO(n/✏) calls to the approximate EFA����
oracle.

Invariants

We start by showing the following invariants are maintained by Algorithm 4 during its run.

B1. In each round there is either an addable set for the cake-adding phase or an ✏̂-envy
cycle for the envy-cycle-elimination phase.

B2. The partial allocation is always ✏̂-EFM with the current ✏̂.

We next prove these invariants in the following.

Lemma 4.18. Invariant B1 holds during the algorithm’s run.

Proof. The proof is similar to the proof of Lemma 4.7, except that we consider the ✏̂-envy
edge instead of the envy edge.

Lemma 4.19. Invariant B2 holds during the algorithm’s run.

Proof. First, it is worth noting that at the beginning, when indivisible goods are allocated,
the allocation is EF1 and therefore EFM. We then note that the partial allocation is only
updated in lines 10 and 20 in the cake-adding phase as well as in line 24 in the envy-cycle-
elimination phase. Given a partial allocation that is ✏̂-EFM, we will show that each of these
updates maintains ✏̂-EFM with the updated ✏̂, which completes the proof of Lemma 4.19.
We note that ✏̂ is only updated in the cake-adding phase and is non-decreasing during the
algorithm’s run.

For analysis in the envy-cycle-elimination phase, the proof is identical to that of Lemma 4.8
in the case of envy-cycle-elimination phase.

We then discuss the cases in the cake-adding phase. For the updated partial allocation in
line 10, we allocate the remaining cake C in a way that is ✏

4 -EF which implies that ui(Ci) �
ui(Cj)�✏/4 holds for any pair of agents i, j 2 N . Given the partial allocation that is ✏̂-EFM,
we have

ui(Ai [Ci) � ui(Aj [Cj)� ✏̂� ✏/4.

Thus it is clear that no ✏̂-envy edge will be generated among agents in S if we update ✏̂ to
✏̂+ ✏/4 in line 9.

For the updated partial allocation in line 20, we allocate some cake C 0 to agents in S in
a way that is �-EF. By a similar argument to the case above, we know that no ✏̂-envy edge

32 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

will be generated among agents in S if we update ✏̂ to ✏̂+ �. Then, for any agent i 2 N \ S,
we have ui(Ai) > ui(Aj) where j 2 S. As ui(C 0) ✏̂, we have

ui(Ai) > ui(Aj [C 0
j)� ✏̂,

where C 0
j is the piece of cake allocated to agent j 2 S. It means that again no ✏̂-envy edge

will be generated from N \S to S when we update ✏̂ to ✏̂+ �. Last, it is obvious that for any
pair of agents in N \ S, we do not generate any (✏̂ + �)-envy edge because the bundles of
these agents remain the same. We note that ✏̂ is updated to ✏̂+ � in line 19 in order to make
sure that there is no introduced ✏̂-envy edge in the updated ✏̂-envy graph.

Correctness

Lemma 4.20. In the cake-adding phase, if the piece of cake to be allocated is not the whole
remaining cake, the sum of all agents’ valuations on the remaining cake decreases by at
least ✏̂.

Proof. We consider the cake-adding phase in lines 5 to 21. If the piece of cake C 0 to be
allocated is not the whole remaining cake, there exists an agent i⇤ inN\S such that ui⇤(C 0) =

✏̂ according to lines 15 to 17. Thus the lemma follows.

We are now ready to show the correctness of Algorithm 4.

Lemma 4.21. Algorithm 4 always returns an ✏-EFM allocation upon termination.

Proof. By Invariant B2, it su�ces to prove that all goods are allocated and ✏̂ is at most ✏
when Algorithm 4 terminates. All indivisible goods are allocated in line 2. Then the while
loop (lines 4 to 25) terminates only when the cake is also fully allocated, as desired.

We now turn our attention to ✏̂. First, ✏̂ is initialized to be ✏/4 and never decreases during
the algorithm’s run. If the whole remaining cake is allocated, there is at most one execution
of the cake-adding phase (lines 6 to 10). Moreover, ✏̂ is increased by ✏/4 in line 9. We
will show later in this proof that this increment would not let ✏̂ exceed ✏. We then focus on
the case where the remaining cake is not fully allocated. There are at most n/✏̂ 4n/✏

executions of the cake-adding phase (lines 11 to 21) according to Lemma 4.20 and the fact
that agents’ utilities are normalized to 1. In addition, ✏̂ is increased by � in each cake-adding
phase in line 19. Thus, ✏̂ is upper bounded by ✏/4 + 4n/✏ · � + ✏/4 = ✏ due to � = ✏2

8n . It
follows that the final allocation is ✏-EFM.

Termination and Time Complexity

Lemma 4.22. In the envy-cycle-elimination phase, the social welfare
P

i2N ui(Ai), in-
creases by at least ✏̂.

Proof. We eliminate an ✏̂-envy cycle T which contains at least one ✏̂-envy edge in the envy-
cycle-elimination phase (lines 22 to 25). Line 24 eliminates the cycle by giving agent j’s

4.4. RELAXATION: ✏-EFM 33

bundle to agent i for each edge i ✏̂-ENVY����! j or i ✏̂-EQ��! j in cycle T . None of the agents involved
in T is worse o� and at least one agent in T is better o� by at least ✏̂ by the definition of
✏̂-envy edge in Definition 4.16. Since agents outside cycle T do not change their bundles,
we complete the proof.

Lemma 4.23. Algorithm 4 has running time O(n4/✏+mn logm) and invokes O(n/✏) calls
to the approximate EFA���� oracle and O(n3/✏) Robertson-Webb queries.

Proof. Since most parts of Algorithm 4 are similar to those in Algorithm 2, and we have
discussed their time complexities in the proof of Lemma 4.12, we will focus on the steps
that a�ect the time complexity for Algorithm 4 in this proof.

Similar to Algorithm 2, Algorithm 4 takes O(mn logm + n2) time to perform lines 2
and 3. Afterwards, by Invariant B1, Algorithm 4 executes either a cake-adding phase or an
envy-cycle-elimination phase in each round, and it takes O(n3) time to check which phase
to go into each time. Next, recall that agents’ utilities are normalized to 1 and ✏̂ is always
no less than ✏/4. This means there are at most O(n/✏) cake-adding rounds by Lemma 4.20
and at most O(n/✏) envy-cycle-elimination rounds by Lemma 4.22.

In the following, we discuss the steps in each phase in details.

Cake-adding phases When we have S = N in line 6, we invoke ✏
4 -EFA���� once, use

O(n) time to update the allocation, and terminate the algorithm.

To determine the piece of cake C 0 to be allocated later, we need O(n) evaluation queries
in line 12, and O(n) cut queries in line 15 if the condition check in line 12 fails. In each
cake-adding phase, we invoke the �-EFA���� oracle with � = ✏2

8n once (line 18). In order
to update agents’ valuations for each bundle, we invoke O(n2) evaluation queries to obtain
all agents’ valuations of all pieces in (C1, C2, . . . , Ck), and then use O(n2) time to update
the envy graph.

Summarizing everything, we conclude that Algorithm 4 makes O(n3/✏) Robertson-
Webb queries, and O(n/✏) calls to the ✏2

8n -EFA���� oracle in total in all cake-adding phases.

Envy-cycle-elimination phases Since we are keeping track of all agents’ valuations for all
bundles, it takes no Robertson-Webb queries and O(n2) time to rearrange the bundles as
well as update the ✏̂-envy graph. Overall all envy-cycle-elimination phases take O(n3/✏)

running time.

The remaining steps can be implemented in time O(n). The overall time complexity of
our algorithm is O(n/✏ ·n3+n/✏ ·n2+mn logm+n2) = O(n4/✏+mn logm). The overall
Robertson-Webb query complexity is O(n3/✏), and the number of calls to the �-EFA����
oracle is O(n/✏).

Finally the correctness of Theorem 4.17 is directly implied by Lemmas 4.21 and 4.23.

34 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

Note that at the end of Section 4.2, we explained why an exact envy-free oracle may not
be helpful to obtain an EFM allocation. However, as we showed in this section, the approx-
imate envy-free oracle does help to obtain an ✏-EFM allocation. Lemma 4.20 provides the
key di�erence. In particular, the error allowed in the ✏-EFM condition ensures that agents’
welfare for the remaining cake is reduced by at least an amount of ✏̂. This claim, however,
makes no sense when discussing exact envy-freeness. Furthermore, Algorithm 4 introduces
additional error into the EFM condition on top of the error that comes from the approximate
envy-free oracle. As a result, even if Algorithm 4 was paired with an exact envy-free oracle,
it would still not produce an exact EFM allocation.

4.5 EFM and Economic E�ciency

In this section, we discuss about combining EFM with economic e�ciency. In particular,
we focus on the well-studied e�ciency notion of Pareto optimality.

Definition 4.24 (PO). An allocation A is said to satisfy Pareto optimality (PO) if there is
no allocation A0 that Pareto-dominates A, i.e., satisfies ui(A0

i) � ui(Ai) for all i 2 N and
at least one inequality is strict.

Definition 4.25 (fPO [28]). An allocation A is said to satisfy fractional Pareto optimality
(fPO) if it is not Pareto dominated by any fractional allocation.3

An fPO allocation is also PO but not vice versa [28]. With divisible resources, an alloca-
tion that is both envy-free and PO always exists [156]. With indivisible goods, an allocation
satisfying both EF1 and fPO (and hence PO) also exists [28]. Next, we show via a counter-
example that with mixed types of goods, EFM and PO are no longer compatible.

Example 4.26 (EFM is not compatible with PO). Consider an instance with two agents, one
indivisible good, and one cake. Agents’ valuation functions are listed below.

Indivisible good Cake C = [0, 1]

Agent 1 0.6 u1(C) = 0.4 with uniform density over [0, 0.5]
Agent 2 0.6 u2(C) = 0.4 with uniform density over [0.5, 1]

It is obvious that in any EFM allocation, one agent will get the indivisible good and the
entire cake has to be allocated to the other agent. However, such an allocation cannot be
PO since the agent with the cake has no value for half of it, and giving that half to the other
agent would make that agent better o� without making the first agent worse o�. 4

This counter-example relies on the fact that in the definition of EFM, if some agent i’s
bundle contains any positive amount of cake, another agent j will compare her bundle to
agent i’s bundle using the stricter envy-free condition, even if agent j has value zero over

3In a fractional allocation, an agent may get a fractional share of an indivisible good. We refer to [28] for
its formal definition.

4.5. EFM AND ECONOMIC EFFICIENCY 35

agent i’s piece of cake. This may seem counter-intuitive, because when agent j has no value
over agent i’s piece of cake, removing that piece from agent i’s bundle will not help eliminate
agent j’s envy. To this end, one may consider the following weaker version of EFM.

Definition 4.27 (Weak EFM). An allocation A is said to satisfy weak envy-freeness for
mixed goods (weak EFM), if for any agents i, j 2 N ,

• if agent j’s bundle consists of indivisible goods with either no divisible good or divis-
ible goods that yield value zero to agent i (i.e., ui(Cj) = 0), there exists an indivisible
good g 2 Aj such that ui(Ai) � ui(Aj \ {g});

• otherwise, ui(Ai) � ui(Aj).

From the definition, it is easy to see that EFM implies weak EFM, which means that all
existence results for EFM established in Section 4.2 can be carried over to weak EFM.

This weaker version of EFM precludes the incompatibility result in Example 4.26. Nev-
ertheless, we show in the following example that weak EFM is incompatible with fPO.

Example 4.28 ((Weak) EFM is incompatible with fPO). Consider an instance with two
agents, one indivisible good and two homogeneous divisible goods. Agents’ valuation func-
tions are listed below.

Indivisible good Divisible good 1 Divisible good 2

Agent 1 2 1 2

Agent 2 2 2 1

Because the valuations are symmetric, we can assume without loss of generality that
in an EFM allocation, the indivisible good is given to agent 1. We also observe that in
any EFM allocation, we cannot allocate all divisible goods to a single agent. This means
that both agents’ bundles must contain some divisible good, which then implies that both
agents need to be envy-free towards the other agent’s bundle. Next, via two simple linear
programs, one can compute the maximum utility of each agent in EFM allocations: giving
the indivisible good and one half of divisible good 2 to agent 1 gives her a maximum utility
of 3; giving divisible good 1 and three quarters of divisible good 2 to agent 2 gives her a
maximum utility of 2.75. We note that the maximum utilities for the two agents are achieved
under di�erent allocations.

However, even putting these two maximum utilities together, it is dominated by the utili-
ties guaranteed by the fractional allocation in which agent 1 gets divisible good 2 and half of
the indivisible good while agent 2 gets divisible good 1 and the other half of the indivisible
good, which will give both agents a utility of 3. This means that any EFM allocation is not
fPO in this problem instance. 4

Could there always exist an allocation that satisfies both weak EFM and PO? We do
not know the answer and believe that it is a very interesting open question. One tempting
approach to answer this open question is to consider the maximum Nash welfare (MNW)

36 CHAPTER 4. ENVY-FREENESS FOR MIXED GOODS

allocation. This is the allocation that maximizes the Nash welfare
Q

i2N ui(Ai) among all
allocations.4 It has been shown that an MNW allocation enjoys many desirable properties
in various settings. In particular, an MNW allocation is always envy-free and PO in cake
cutting [144], as well as EF1 and PO for indivisible resource allocation [69]. It is therefore
natural to conjecture that it also satisfies EFM and PO for mixed goods. Unfortunately, this
is not the case. Here we give such a counter-example.

Example 4.29 (MNW does not imply (weak) EFM). Consider the following instance with
two agents, two indivisible goods and some money (a homogeneous divisible good for which
every agent has the same value). Agents’ valuation functions are listed below.

Indivisible good 1 Indivisible good 2 Money
Agent 1 0.4 0.4 0.2

Agent 2 49.9 49.9 0.2

We discuss the following cases to find the MNW allocation.

• When both indivisible goods are given to agent 1, giving the whole cake to agent 2
maximizes the Nash welfare, which is (0.4 + 0.4)⇥ 0.2 = 0.16.

• When both indivisible goods are given to agent 2, giving the whole cake to agent 1
maximizes the Nash welfare, which is 0.2⇥ (49.9 + 49.9) = 19.96.

• When each agent gets exactly one indivisible good, in the Nash welfare maximizing
allocation, denoted by A, agent 1 receives an indivisible good and the entire cake, and
agent 2 receives the other indivisible good. The Nash welfare of A is (0.4 + 0.2) ⇥
49.9 = 29.94. This is also the overall MNW allocation for this instance.

However, allocation A is not weak EFM as agent 1’s bundle contains some cake that
yields positive value to agent 2, and agent 2 is envious of agent 1. It is also worth noting that
there is a simple envy-free and PO allocation for this instance: each agent gets one indivisible
good and one half of the cake, with Nash welfare (0.4 + 0.1)⇥ (49.9 + 0.1) = 25. 4

Note that the compatibility of weak EFM and PO remains an open question even for the
special case with indivisible goods and a single homogeneous divisible good (e.g., money),
even though this case is well-studied when there is enough money.

4In the case where the maximum Nash welfare is 0, an allocation is an MNW allocation if it gives positive
utility to a set of agents of maximal size and moreover maximizes the product of utilities of the agents in that
set.

Chapter 5

Maximin Share Guarantee †

5.1 Introduction

In this chapter, we extend the analysis of MMS allocations to the mixed goods model, study
its existence, approximation and computation, and in particular, focus on questions below:

1. Is the worst-case MMS approximation guarantee across all mixed goods instances the
same as that across all indivisible goods instances?

2. Given any instance, would adding some divisible resources to it always (weakly) in-
crease the best possible MMS approximation ratio of this instance?

3. How to design algorithms that could find allocations with good MMS approximation
guarantee in mixed goods instances?

In Section 5.2, we start by showing that any instance of mixed goods can be converted
into another instance with only indivisible goods, such that the two instances have the same
maximin share for every agent, and any allocation of the indivisible instance can be con-
verted into an allocation in the mixed instance. This reduction directly implies that the
worst-case MMS approximation guarantee across all mixed goods instances is the same as
that across all indivisible goods instances. This is not a surprising result, after all, the non-
existence of MMS allocations only arises when the resources to be allocated become indi-
visible. It is therefore reasonable to think that adding divisible goods to the set of indivisible
goods can only help with the MMS approximation guarantee. However, we show that this
intuition no longer holds at the per-instance level. In particular, we provide an instance with
only indivisible goods and when a small amount of cake is added to the instance, the MMS
approximation guarantee of the instance strictly decreases, i.e., while an ↵-MMS allocation
exists in the original instance, no ↵-MMS allocation exists after adding the cake.

Next in Section 5.3, we focus on finding allocations of mixed goods with good MMS
approximations. To this end, we show via a constructive algorithm that given any mixed
goods instance, there exists an ↵-MMS allocation, where the parameter ↵, ranged between

†This chapter has been published in a paper by Bei, Liu, Lu, and Wang [37].

37

38 CHAPTER 5. MAXIMIN SHARE GUARANTEE

1/2 and 1, is a monotonically increasing function of how agents value the divisible goods
relative to their maximin share. The main idea of our algorithm is to repeatedly assign
some agent a set of indivisible goods along with a piece of cake to reach ↵ fraction of
this agent’s maximin share, and then reduce the problem to a smaller size. When the cake
to be allocated is heterogeneous, the algorithm also utilizes a generalized fairness notion,
weighted proportionality, to help allocate the cake. On the computational front, we present
polynomial-time approximation schemes to approximate an agent’s maximin share and to
compute a (1�✏)↵-MMS allocation. These algorithms run in time polynomial in the number
of agents, the number of indivisible goods, and the input bit length.

5.2 MMS Approximation Guarantee

We examine how mixed goods a�ect the existence and approximation of MMS allocations.

5.2.1 Worst-Case MMS Approximation Guarantee

Maximin share guarantee, while being an appealing solution concept, may not always be
satisfied with indivisible goods [108]. Therefore, one has to resort to approximate MMS al-
locations. Allocating mixed goods generalizes the indivisible goods case, and hence, su�ers
from the same issue. We start by analyzing the worst-case MMS approximation guarantee
for mixed goods instances.

Definition 5.1. Given a mixed goods instance I , let �(I) denote the maximum value of ↵
such that this instance admits an ↵-MMS allocation.1 We also call �(I) the MMS approxi-
mation guarantee of instance I .

We further define two constants: �mix := inf
I=hN,M[Ci

�(I) and �ind := inf
I=hN,Mi

�(I). Put

di�erently, �mix (resp., �ind) is the worst MMS approximation guarantee across all mixed
(resp., indivisible) goods instances. We have �ind < 1 according to [108] and �ind � 3

4 +
1

12n

according to [91]. It is also straightforward from the definition that �mix �ind. In the
following, we show via the following reduction theorem that �mix is also at least �ind.

Theorem 5.2. Given any mixed goods instance I = hN,M [Ci, there is another instance
I 0 = hN,M 0i with only indivisible goods M 0 and the same set of agents N such that

• any allocation A0 of M 0 can be converted into another allocation A of M [C with
ui(Ai) = ui(A0

i) for each agent i 2 N ;

• MMSi(n,M [C) = MMSi(n,M 0) for each agent i 2 N .

Proof. We first transform the mixed goods instance I = hN,M [Ci into an instance I 0 =

hN,M 0i with only indivisible goods. Consider an agent i and an MMS partition Pi for this
1The �(I) is defined to be the maximum value of ↵ instead of the supremum in that the density functions

are non-atomic and the maximum ↵ can always be achieved.

5.2. MMS APPROXIMATION GUARANTEE 39

agent in I . Clearly, we can assume thatPi divides cakeC into at mostn intervals with at most
n�1 cuts. This assumption is without loss of generality because in an MMS partition it only
matters how much value worth of cake is assigned to each bundle, but not their positions.
Then, by collecting all cuts from all n MMS partitions P1,P2, . . . ,Pn on cake C, the cuts
break up the cake into at most n(n� 1)+1 intervals. Let these intervals of C be the set M 00

of “indivisible frozen intervals”. Together with M , we now have M 0 = M 00 [M .
Given any allocation A0 of M 0, we can easily convert it into an allocation A of M [C by

transforming those “indivisible frozen intervals” back to normal pieces of cake. This also
gives ui(Ai) = ui(A0

i) for each agent i 2 N , which proves the first part of Theorem 5.2.
It is also clear that every agent can have the same MMS partition in I 0 as that in I ,

because the cuts do not a�ect their MMS partitions. This implies that MMSi(n,M 0) �
MMSi(n,M [C) for each agent i 2 N . On the other hand, the first part of the theorem
also implies MMSi(n,M [C) � MMSi(n,M 0). Hence, we have MMSi(n,M [C) =

MMSi(n,M 0) for each agent i 2 N .

It is worth noting that this reduction is not computationally e�cient as it needs to com-
pute agents’ MMS partitions. Moreover, Theorem 5.2 directly implies the following result.

Corollary 5.3. �ind = �mix.

In other words, having mixed types of goods does not a�ect the worst-case MMS ap-
proximation guarantee across all instances. As another corollary, this also means that if
there exists a universal �-MMS algorithm for indivisible goods for some �, it immediately
implies that every instance with mixed goods also admits a �-MMS allocation. We will
discuss more about the algorithmic implication of this result in Section 5.3.4.

5.2.2 Cake Does Not Always Help

It is noteworthy that Corollary 5.3 is about the worst-case MMS approximation guarantee
across all instances. We next show that such an equivalence may not hold on a per-instance
level. In particular, we will demonstrate via an example that sometimes, adding some divis-
ible goods to some instance I may hurt its MMS approximation guarantee �(I).

Theorem 5.4. For any n � 6, there exist some set of agents N , indivisible goods M , and
divisible goods C, such that �(hN,Mi) > �(hN,M [Ci). That is, adding some divisible
goods to a set of goods may decrease the MMS approximation guarantee of the instance.

We start by explaining the intuition behind the proof. We want to find an instance I =

hN,Mi such that �(hN,Mi) < 1, and the instance should have the following properties.
Fix an agent i. In her MMS partition, the least valued bundle is unique, i.e., the value

of the least valued bundle is strictly less than that of the second worst bundle. If this is
the case, then given a cake C with small enough value ✏, the new maximin share of this
agent MMSi(n,M [C) should be exactly MMSi(n,M) + ✏. Now, suppose that in instance

40 CHAPTER 5. MAXIMIN SHARE GUARANTEE

I , all of the agents have this property. This means that every agent’s maximin share will
increase by ✏ when we add cake C to instance I . The second required property of instance I
is that in any �(hN,Mi)-MMS allocation, there are at least two agents receiving a value of
exactly �(hN,Mi) times their maximin share. With these two properties, the actual cake C
will not be enough for distributing to all of the agents while clinging to a large enough MMS
approximation ratio �(hN,M[Ci). In other words, with cakeC being added, the new MMS
approximation ratio �(hN,M [Ci) will decrease, comparing with �(hN,Mi). Finally, the
counter-example used to show the non-existence of MMS allocations by Kurokawa et al.
[108] can be utilized to construct instance I that satisfies the two aforementioned properties.
By utilizing their construction, our argument requires at least six agents.

Proposition 5.5 (Kurokawa et al. [108]). For any n � 6, there exists a matrix M 2 Rn⇥n

with the following properties:

1. All entries are non-negative (i.e., 8i, j : Mi,j � 0).

2. All entries of the last row and column as well as the first entry in the first row are
positive (i.e., M1,1 > 0 and 8i : Mi,n,Mn,i > 0).

3. All rows and columns sum to 1 (i.e., M~1 = M>~1 = ~1).

4. Define M+ as the set of all positive entries in M . Then if we wish to partition M+

into n subsets that sum to exactly 1, then our partition must correspond to either the
rows of M or the columns of M .

Proof of Theorem 5.4. Construct two n ⇥ n matrices P+ and P�. Let P+
1,1 = P�

1,1 = �✏,
P+
n,1 = P�

1,n = �✏, P+
n,n = P�

n,n = (2n � 3)✏, and P+
n,i = P�

i,n = �2✏ for 2 i n � 1.
Take n = 6 as an example, we show below the construction of matrices P+ and P�:

P+ =

2

6666666664

�✏ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�✏ �2✏ �2✏ �2✏ �2✏ 9✏

3

7777777775

and P� =

2

6666666664

�✏ 0 0 0 0 �✏
0 0 0 0 0 �2✏
0 0 0 0 0 �2✏
0 0 0 0 0 �2✏
0 0 0 0 0 �2✏
0 0 0 0 0 9✏

3

7777777775

Now, consider a matrix M satisfying all properties listed in Proposition 5.5. By setting
✏ to a su�ciently small value, we can always make sure that every entry of M + P+ and
M + P� is non-negative. In the following, we will regard each entry of matrix M as an
indivisible good. We next divide N into two disjoint subsets. One subset contains

⌅
n
2

⇧

agents, denoted by N+; the other contains the remaining agents, denoted by N�. We let
each agent i 2 N+ take the values of n2 goods as in matrix M+P+, and each agent i 2 N�

take the values of n2 goods as in matrix M + P�. We call this instance I . One can check
that in instance I , the maximin share of every agent is 1� ✏.

5.3. EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS 41

According to the fourth property in Proposition 5.5, there are only two ways to distribute
these goods into n bundles such that each bundle has value close to 1: either the rows of M
or the columns of M . In each of these two partitions, we can always have at least two agents
who value their bundles exactly 1 � 2✏. For example, there are two such agents from N+

if the partition is n columns, or two from N� if the partition is n rows. In particular, this
means that the MMS approximation guarantee �(I) of instance I is 1�2✏

1�✏ .
Suppose now that we add a homogeneous cake to instance I . This cake has value ✏ to

each agent. Therefore, every agent’s maximin share will now increase exactly from 1 � ✏

to 1. However, in any allocation, there will still be at least two agents whose values for the
indivisible goods are at most 1 � 2✏. Then the best possible way to distribute the cake is
to allocate it only to those agents, which means that at least one such agent will receive a
bundle of value at most 1�2✏+✏/2 = 1�3✏/2. Thus, in this case, the MMS approximation
ratio of this agent will be at most 1�3✏/2, which is strictly less than 1�2✏

1�✏ when ✏ < 1/3.

5.3 Existence and Computation of Approximate MMS
Allocations

Section 5.2 investigates MMS approximation guarantee, which is the best possible MMS
approximation of an instance. In this section, our goal is to design algorithms that could
compute allocations with good MMS approximation ratios in mixed goods instances. We
hope such an algorithm can be flexible in the sense that when the instance contains only
indivisible goods, the MMS approximation of the output allocation should match or be close
to the currently best approximation ratio for indivisible goods; on the other hand, when the
resources contain enough valuable divisible goods, the indivisible goods would become
negligible, and our algorithm should be able to produce an MMS allocation.

As the main result of this section, in the following, we present such an algorithm. We
will show that the algorithm will always produce an ↵-MMS allocation in the mixed goods
setting, where ↵ is a monotonically increasing function of how agents value the divisible
goods relative to their maximin share and ranges between 1/2 and 1.

Precision and Input Representation When discussing the computational aspects, it is
necessary to specify the precision and representation of the input instance. In this section,
we assume that ui(g)’s for all i 2 N, g 2M and ui(C)’s for all i 2 N are rational numbers
as well as the whole input can be represented in at most L bits.

Theorem 5.6. Given any mixed goods instance hN,M [Ci, an ↵-MMS allocation always
exists, where

↵ = min

⇢
1,

1

2
+ min

i2N

⇢
ui(C)

2 · (n� 1) · MMSi

��
.

Furthermore, for any constant ✏ > 0, we can compute a ratio ↵0 and an allocation A in
time polynomial in n,m,L such that

42 CHAPTER 5. MAXIMIN SHARE GUARANTEE

1. ↵0 � ↵, and

2. A is (1� ✏)↵0-MMS.

Here, n is the number of agents, m is the number of indivisible goods, and L is the total bit
length of all input parameters.

When every agent i has ui(C) � n
2 · MMSi, Theorem 5.6 implies the existence of an

↵-MMS allocation with ↵ being better than the currently best approximation ratio of 3
4+

1
12n

for indivisible goods [91]. In addition, we show in the following corollary the amount of
divisible goods needed to ensure that an instance admits an MMS allocation.

Corollary 5.7. Given a mixed goods instance hN,M [Ci, if ui(C) � (n�1) ·MMSi holds
for every agent i 2 N , then an MMS allocation is guaranteed to exist.

It means that even with the presence of indivisible goods, as long as there are enough
valuable cake, an MMS allocation can always be found. This corollary, however, should not
be interpreted as indicating the least amount of cake required. In a related line of work,
Halpern and Shah [97] and Brustle et al. [64] studied the allocation of indivisible goods
together with a very special type of divisible goods, i.e., money and bounded the amount of
money needed for an indivisible goods instance to have an envy-free allocation, assuming
that the value of each agent for each good is at most 1. Although an envy-free allocation
satisfies MMS guarantee, their results and this corollary are not comparable because we
have di�erent objectives, and it is not our goal to find the minimum amount of cake needed
to ensure an MMS allocation.

The remainder of this section is dedicated to the proof of Theorem 5.6, consisting of three
steps as follows, and discuss how to improve the approximation ratio ↵ in Section 5.3.4.

Section 5.3.1 We start by focusing on a restricted case in which the cake to be allocated is
homogeneous to every agent. We show via a constructive, but not necessarily polynomial-
time, algorithm that an ↵-MMS allocation always exists in this setting.

Section 5.3.2 Next, we generalize the above algorithm to the case with heterogeneous cake,
using a concept called weighted proportionality in cake cutting.

Section 5.3.3 We then discuss how to convert the algorithm into a polynomial-time algo-
rithm at the cost of a small loss in the MMS approximation ratio.

5.3.1 Homogeneous Cake

We begin with a special case where the cake to be allocated, denoted as bC, is homogeneous.
The pseudocode to compute an ↵-MMS allocation is presented as Algorithm 5. Our

algorithm is in spirit similar to the one devised by Ghodsi et al. [93]. The main idea of
the algorithm is to repeatedly assign some agent a bundle of goods which is worth at least ↵
times this agent’s maximin share and then reduce the problem to a smaller size. Specifically,
after initialization, our algorithm can be decomposed into two phases as follows:

5.3. EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS 43

Algorithm 5: M����-MMS-H����������(N,M [bC)

Input: Agents N , indivisible goods M and a homogeneous cake bC, as well as
utility and density functions.

1 Compute MMSi for each i 2 N .
2 ↵ min

n
1, 12 +mini2N

n
ui(bC)

2·(n�1)·MMSi

oo

3 A1, A2, . . . , An ;
4 while 9i 2 N, g 2M,ui(g) � ↵ · MMSi do // Phase 1
5 Ai {g} // arbitrary tie-breaking
6 N N \ {i}, M M \ {g}
7 while |N | � 2 do // Phase 2
8 B ;
9 Add one indivisible good at a time to B until uj(B) � (1� ↵) · MMSj for

some agent j, or B = M .
10 Suppose w.l.o.g. that bC = [a, b]. For each agent i 2 N , let xi be the leftmost

point such that ui(B [[a, xi]) � ↵ · MMSi.
11 i⇤ argmini2N xi // arbitrary tie-breaking
12 Ai⇤ B [[a, xi⇤]

13 N N \ {i⇤}, M M \B, bC bC \ [a, xi⇤]

14 Give all remaining goods to the last agent.
15 return (A1, A2, . . . , An)

Phase 1: allocate big indivisible goods (lines 4 to 6) This phase repeatedly allocates some
agent an indivisible good which has a value at least↵ times this agent’s maximin share. Then,
both the agent and the allocated indivisible good are removed from all further considerations.

Phase 2: allocate small indivisible goods and cake (lines 7 to 13) In each round of this
phase, Algorithm 5 chooses an agent i⇤ and allocates some indivisible goods B (formed
in line 9) along with a piece of cake [a, xi⇤] to this agent (line 12). Then again, both the
agent and her goods are removed from the instance.

Algorithm 5 consists of two mutually exclusive phases, and thus we will go through their
analyses separately as follows.

Phase 1: Allocate Big Indivisible Goods When goods are all indivisible, it follows from
Bouveret and Lemaître [49, Lemma 1] that allocating a single good to an agent does not
decrease the MMS values of other agents; we adopt the name “monotonicity property” from
Amanatidis et al. [7]. Here, we show this result holds in the mixed goods setting as well.

Lemma 5.8 (Monotonicity property). Given an instance hN,G = M [Ci, for any agent
i 2 N and any indivisible good g 2M , it holds that MMSi(n�1, G\{g}) � MMSi(n,G).

Proof. Removing a single indivisible good in an MMS partition of agent i a�ects exactly one
bundle and each of the remaining n� 1 bundles has value at least MMSi(n,G). Therefore,
we have MMSi(n� 1, G \ {g}) � MMSi(n,G).

44 CHAPTER 5. MAXIMIN SHARE GUARANTEE

Denote by N1 the set of n1 remaining agents and G1 the set of unallocated goods just
before Phase 2 executes. Applying the monotonicity property (Lemma 5.8) n � n1 times,
we have that for each agent i 2 N1, MMSi(n1, G1) � MMSi(n,G). In addition, each
agent i who leaves the system in Phase 1 receives an indivisible good of value at least ↵ ·
MMSi(n,G). This implies that Phase 1 will not a�ect the correctness and termination of
Algorithm 5. It also adds the property that in Phase 2, each remaining agent i will value
each of the remaining indivisible goods less than ↵ · MMSi.

Phase 2: Allocate Small Indivisible Goods and Cake At each round of this phase, for
agent i⇤ selected in line 11, we show it satisfies the following two properties:

(1) ui⇤(Ai⇤) � ↵ · MMSi⇤ ;

(2) for each agent j remaining in N , uj(Ai⇤) MMSj .

Property (1) is straightforward by the way each xi is computed in line 10. To prove
Property (2), we remark that no single good is valued more than ↵ · MMSi for any agent
i. Therefore, the set B formed in line 9 must satisfy uj(B) MMSj for all j 2 N . In
line 10, each agent cuts a piece of cake such that the sum of her value for B and this piece
of cake is at least ↵ fraction of her maximin share. Because ↵ 1 and the cake is divisible,
after line 10, it continues to satisfy that uj(B [[a, xj]) MMSj for each j 2 N . Then,
because i⇤ is selected such that xi⇤ is the smallest value, we have uj(Ai⇤ = B [[a, xi⇤])
uj(B [[a, xj]) MMSj for each agent j 2 N . In particular, Property (2) ensures that the
last agent in line 14 is still left with enough goods to reach her maximin share. Therefore,
every agent i will receive a value of at least ↵ · MMSi after the two phases.

It only remains to show that cake bC is enough to be allocated throughout the process.

Lemma 5.9. Cake bC is enough to be allocated in Algorithm 5. In other words, xi for each
agent i 2 N in line 10 is always well defined in each round.

Proof. Line 2 of Algorithm 5 indicates that for each agent i 2 N , ui(bC) � (n� 1) · (2↵�
1) · MMSi. As a result, each agent i has value at least (2↵ � 1) · MMSi for a 1/(n � 1)

fraction of the entire cake bC. It is also clear that Phase 2 has been executed at most n � 1

times during the algorithm’s run. That is to say the action of cutting a piece of cake bC and
allocating this piece to an agent is performed at most n� 1 times.

Based on whether there exists some agent who values B in line 9 at least (1� ↵) times
her maximin share, we distinguish two cases as follows.

Line 9: there exists some agent j with uj(B) � (1� ↵) · MMSj As mentioned earlier, a
1/(n�1) fraction of bC is worth at least (2↵�1) ·MMSj . Thus along with B, it is enough to
give agent j a value of at least ↵ · MMSj . This means that in line 10, the length of [a, xj] is
at most 1/(n� 1). Moreover, Algorithm 5 chooses the agent who claims the smallest piece
of cake as agent i⇤ (line 11), meaning that the length of [a, xi⇤] is again at most 1/(n � 1).

5.3. EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS 45

Combining the fact that Phase 2 executes at most n� 1 times, if this case holds every time,
the cake will be enough.

Line 9: uj(B) < (1� ↵) · MMSj for each agent j In this case, B is set to be M in line 9.
We also note that after the first time of this case, M will become empty, and the agents left
will divide only the cake for the remaining rounds. Let k be the number of the remaining
agents when M becomes empty. By Property (2) that we showed above, we know the re-
maining cake is worth at least k · MMSi for each remaining agent i. Thus, it is enough for
each agent i to receive a piece with value at least ↵ · MMSi.

Combining everything together, we conclude that Algorithm 5 is correct and always
outputs an ↵-MMS allocation.

5.3.2 Heterogeneous Cake

We now show how to extend Algorithm 5 to the general setting with the heterogeneous
cake C. Our new algorithm follows a very simple idea. First, we replace cake C with a
homogeneous cake bC such that ui(bC) = ui(C) for every agent i 2 N , and next allocate
goods M and bC to all of the agents using Algorithm 5. Let bCi be the piece allocated to
agent i in this step. Note that since cake bC is homogeneous, only the length of bCi matters,
which we denote as wi. Because the length of cake bC is 1, wi also represents the fraction
of cake bC allocated to agent i. Next, we view wi as the entitlement (or weight) of agent i to
cake C, and obtain the actual allocation of cake C via a procedure known as the weighted
proportional allocation.

Weighted Proportional Cake Cutting This concept generalizes proportionality to the
weighted case in cake cutting. Formally, assume that every agent i 2 N is assigned a
non-negative weight wi such that

P
i2N wi = 1. We call the vector of weights w =

(w1, w2, . . . , wn) a weight profile.

Definition 5.10. Given a weight profile w, an allocation C = (C1, C2, . . . , Cn) of cake C is
said to satisfy weighted proportionality (WPR) if for each agent i 2 N , ui(Ci) � wi ·ui(C).

A weighted proportional allocation of cake gives each agent at least her entitled fraction
of the entire cake from her own perspective. The notion of proportionality in Definition 2.1
is a special case of WPR with w =

�
1
n ,

1
n , . . . ,

1
n

�
. With any set of agents and any weight

profile, a WPR allocation always exists [77]. In the following, we will assume that our algo-
rithm is equipped with the protocol WPRA����(N,C,w) that could return us a weighted
proportional allocation of cake C, among the set of agent N with weight profile w.

The pseudocode to compute an ↵-MMS allocation of mixed goods for any number of
agents is presented as Algorithm 6. To show that this algorithm can find an ↵-MMS alloca-
tion with mixed goods that contain a heterogeneous cake, it su�ces to prove the following
two simple facts:

46 CHAPTER 5. MAXIMIN SHARE GUARANTEE

Algorithm 6: Mixed MMS Algorithm
Input: Agents N , mixed goods M [C, as well as utility and density functions.

1 Let bC = [0, 1] be a homogeneous cake with ui(bC) = ui(C) for each agent i 2 N .
2 (M1 [bC1, . . . ,Mn [bCn) M����-MMS-H����������(N,M [bC)
3 foreach i 2 N do // Assign weights.
4 if ui(C) > 0 then wi ui(bCi)/ui(C) else wi 0

5 (C1, C2, . . . , Cn) WPRA����(N,C,w = (w1, . . . , wn))
6 return (M1 [C1,M2 [C2, . . . ,Mn [Cn)

1. MMSi(n,M [C) = MMSi(n,M [bC). This is obvious because both C and bC are
divisible and we have ui(C) = ui(bC). Only changing the density of a cake will not
a�ect the maximin share of any agent.

2. ui(Ci) � ui(bCi). Due to WPR, we have ui(Ci) � wi · ui(C) = wi · ui(bC) = ui(bCi).

5.3.3 Computation

We now investigate the computational issues in finding an ↵-MMS allocation in this section.
Note that Algorithm 6 is not a polynomial-time algorithm unless P=NP in that it requires
the knowledge of every agent’s maximin share, which is NP-hard to compute even with only
indivisible goods [108]. To obtain a polynomial-time approximation algorithm, we start by
showing how to approximate the maximin share of an agent with mixed goods, and then
focus on obtaining an approximate ↵-MMS allocation.

Approximate Maximin Share with Mixed Goods

When goods are indivisible, Woeginger [159] showed a polynomial-time approximation
scheme (PTAS) to approximately compute the maximin share of an agent. More specifi-
cally, given any constant � > 0 and any agent, we can partition the indivisible goods into
n bundles in polynomial time, such that each bundle is worth at least 1 � � of that agent’s
maximin share. Utilizing this PTAS, we present here a new PTAS to approximate an agent’s
maximin share with mixed goods.

Lemma 5.11. Given any mixed goods instance I = hN,M [Ci and constant ✏ > 0, for
any agent i 2 N , one can compute a partition (P1, P2, . . . , Pn) of M [C in polynomial
time, such that minj2N ui(Pj) � (1� ✏) · MMSi(n,M [C).

Proof. Let agent i cut the cake C into
⌃
2n
✏

⌥
disjoint intervals worth at most ✏·ui(C)

2n each to
this agent. Denote by eC the collection of these discretized, indivisible intervals. The new
discretized instance is then denoted by I 0 = hN,M [eCi. It is worth noting that I 0 is an
instance with only indivisible goods.

We first claim that

MMSi(n,M [C) � MMSi(n,M [eC) �
⇣
1� ✏

2

⌘
· MMSi(n,M [C).

5.3. EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS 47

The first inequality holds trivially by definition. We now proceed to show the second in-
equality. Consider an MMS partition T of instance I for agent i. We construct a partition
T 0 of instance I 0 as follows. First, let the partition of its original indivisible goods M be
exactly the same as that in T . We then distribute the intervals eC to these n bundles. For
any bundle whose value is strictly less than

�
1� ✏

2

�
· MMSi(n,M [C) to agent i, add one

interval at a time to this bundle until agent i’s value for this bundle falls in
h⇣

1� ✏

2

⌘
· MMSi(n,M [C),MMSi(n,M [C)

i
.

This is possible because we have MMSi(n,M [C) � ui(C)
n and each interval is worth

at most ✏·ui(C)
2n ✏

2 · MMSi(n,M [C). Furthermore, eC has enough pieces for such a
distribution, because in T , each bundle is worth at least MMSi(n,M [C) to agent i. Repeat
this procedure for all n bundles. Finally, we arbitrarily distribute any remaining intervals to
these bundles. Let the resulting partition be T 0.

At the end of these procedures, each bundle in T 0 is worth at least
�
1� ✏

2

�
·MMSi(n,M[

C). Thus, by the definition of maximin share, the second inequality also holds. We remark
that the aforementioned procedures are not actually implemented in our algorithm. They are
only used to demonstrate the di�erence of maximin share of the two instances.

Now, since I 0 is an instance with only indivisible goods, we are able to compute a parti-
tion (P1, P2, . . . , Pn) of instance I 0 such that minj2N ui(Pj) �

�
1� ✏

2

�
· MMSi(n,M [eC)

using the PTAS of Woeginger [159] with � = ✏/2. It then holds that

min
j2N

ui(Pj) �
⇣
1� ✏

2

⌘
·
⇣
1� ✏

2

⌘
· MMSi(n,M [C) � (1� ✏) · MMSi(n,M [C).

Lemma 5.11 also implies that in the mixed goods setting, we can compute in polynomial
time a value MMS0

i such that MMSi(n,M [C) � MMS0
i � (1� ✏) · MMSi(n,M [C).

Approximate ↵-MMS Allocation

We are now ready to present a polynomial-time algorithm to compute an approximate ↵-
MMS allocation. It is almost similar to Algorithm 6, except for the following two di�erences:

1. line 1 of Algorithm 5: we compute an approximate maximin share, MMS0
i, which is

at most MMSi(n,M [C) and at least (1�✏) ·MMSi(n,M [C) for each agent i 2 N ;

2. line 2 of Algorithm 5: we compute a ratio ↵0 using approximate maximin share, i.e.,

↵0 min

⇢
1,

1

2
+ min

i2N

⇢
ui(C)

2 · (n� 1) · MMS0
i

��
.

A similar analysis to Lemma 5.9 shows that the modified algorithm with these approximate
values still terminates. Next, according to Lemma 5.11, we have MMSi(n,M[C) � MMS0

i

for each agent i 2 N , which implies that ↵0 � ↵. Then, for any agent i, by the design of
the algorithm, this agent is guaranteed to receive a bundle with value at least ↵0 · MMS0

i �
(1� ✏)↵0 · MMSi(n,M [C). Therefore, the resulting allocation is (1� ✏)↵0-MMS.

48 CHAPTER 5. MAXIMIN SHARE GUARANTEE

Time Complexity Analysis

In the light of Lemma 5.11, computing approximate maximin share takes polynomial time.
Thus, the only step that needs time complexity analysis is the WPRA����(N,C,w) called in
line 5 of Algorithm 6, which produces a weighted proportional allocation of cake C among
agents N . When all weights are rational numbers, Cseh and Fleiner [77] implemented such
a protocol using O(n logD) queries, where D is the common denominator of weights. They
also showed that their implementation is asymptotically the fastest possible.

We have assumed that our input has size at mostL bits. Each of the arithmetic operations
in steps before line 5 of Algorithm 6 keeps the numbers rational with polynomial bit size.
Thus, the WPRA���� in line 5 of Algorithm 6 can be implemented in polynomial time [77].
Summarizing everything together, we obtain a polynomial-time algorithm.

Sections 5.3.1 to 5.3.3 together complete the proof of Theorem 5.6.

5.3.4 Improvement of the Approximation Ratio

The smallest value of ↵ is 1/2 in Theorem 5.6, achieved when the resources contain only
indivisible goods. However, there is a gap between our result and the currently best approx-
imation guarantee with only indivisible goods, i.e., �ind � 3

4 +
1

12n [91]. In the following, we
show a simple procedure which improves the MMS approximation ratio computed by our
algorithm to (almost) match the currently best ratio for indivisible goods.

Existence-wise, Corollary 5.3 (�ind = �mix) implies that we can directly improve the ratio
to max{↵, �ind} in Theorem 5.6. We now discuss computation. Suppose that there exists a
polynomial-time algorithm guaranteeing to return a �-MMS allocation of indivisible goods.
Given a mixed goods instance, we can compute ↵0 and next compare it with �: if ↵0 � �, we
directly apply Theorem 5.6; otherwise, we cut cake C into small indivisible intervals with
each being valued at most ✏·ui(C)

2n for every agent i, and then apply the �-MMS algorithm to
this new “indivisible” goods instance. To conclude, we strengthen our result as follows.

Theorem 5.12. A max{↵, �ind}-MMS allocation with mixed goods always exists for any
number of agents. In addition, if there exists a polynomial-time algorithm that is guaranteed
to output a �-MMS allocation with indivisible goods, then for any constant ✏ > 0, there is
another polynomial-time algorithm that computes a (1� ✏)max{↵0, �}-MMS allocation.

The proof of Theorem 5.12 utilizes the proof of Lemma 5.11 and is straightforward to
prove. The currently best lower bound of �ind is 3

4 +
1

12n and the currently best guarantee for
� is 3/4; both are due to Garg and Taki [91]. Any better lower bound of �ind and any better
guarantee for � found in the future would immediately imply a better MMS approximation
guarantee in the mixed goods setting as well.

Part II

Fairness Versus Other Desideratum for
Indivisible Goods

49

Chapter 6

Price of Fairness †

6.1 Introduction

While fairness is of great importance in resource allocation, it is obviously not the only
objective of interest. An issue orthogonal to fairness is e�ciency, or social welfare, which
refers to the total happiness of the agents. A fundamental question is therefore how much
e�ciency we might lose if we want our allocation to be fair.

This question was first addressed independently by Bertsimas et al. [40] and Caragiannis
et al. [67], who introduced the price of fairness concept to capture the e�ciency loss due to
fairness constraints. In particular, for any fairness notion and any given resource allocation
instance with additive utilities, Caragiannis et al. defined the price of fairness of the instance
to be the ratio between the maximum social welfare over all allocations and the maximum
social welfare over allocations that are fair according to the notion. The overall price of
fairness for this notion is then defined as the largest price of fairness across all instances.
Caragiannis et al. considered three major fairness properties in the literature—envy-freeness,
proportionality, and equitability, and presented a series of results on the price of fairness with
respect to these notions; they assumed that the agents have additive utilities and each agent
has utility 1 for the entire set of resources. As an example, they showed that for the allocation
of indivisible goods among n agents, the price of proportionality is n � 1 + 1/n, meaning
that the e�ciency of the best proportional allocation can be a linear factor away from that
of the best allocation overall.

Caragiannis et al.’s work sheds light on the trade-o� between e�ciency and fairness in
the allocation of both divisible and indivisible resources. However, a significant limitation
of their study is that while an allocation satisfying each of the three fairness notions always
exists when goods are divisible, this is not the case for indivisible goods. Indeed, none of the
notions can be satisfied in the simple instance with (at least) two agents and a single good
to be allocated. Caragiannis et al. circumvented this issue by simply ignoring instances in
which the fairness notion in question cannot be satisfied. As a result, their price of fairness
analysis, which is meant to capture the worst-case e�ciency loss, fails to cover certain sce-

†This chapter has been published in a paper by Bei, Lu, Manurangsi, and Suksompong [38].

51

52 CHAPTER 6. PRICE OF FAIRNESS

narios that may arise in practice.1 In addition, the fact that certain instances are not taken
into account in the price of fairness have seemingly contradictory consequences. For exam-
ple, since envy-free allocations are always proportional when utilities are additive, it may
appear at first glance that the price of envy-freeness must be at least as high as the price of
proportionality. This is not necessarily the case, however, because there are instances that
admit proportional but no envy-free allocations.2

To address these limitations, in this chapter we study the price of fairness for indivis-
ible goods with respect to fairness notions that can be satisfied in every instance. Among
other notions, we consider envy-freeness up to one good (EF1), balancedness, maximum
Nash welfare (MNW), maximum egalitarian welfare (MEW), and leximin; see Sections 2.2
and 6.2 for the formal definitions of these notions. In addition to deriving bounds on the
price of fairness for these notions, we also introduce the concept of strong price of fairness,
which captures the e�ciency loss in the worst fair allocation as opposed to that in the best
fair allocation. The strong price of fairness is relevant in settings where one is guaranteed an
allocation satisfying some fairness notion but has no control over the particular allocation—
for instance, we may be participating in an allocation exercise using an algorithm that guar-
antees EF1 or MNW, and wonder whether that fairness guarantee comes with any assurance
on the social welfare. Indeed, certain fair division algorithms such as the envy cycle elimi-
nation algorithm [113] may output EF1 allocations with low e�ciency; see the example in
Theorem 6.6. The relationship between the price of fairness and the strong price of fairness
is akin to that between the price of stability and the price of anarchy for equilibria. While
the strong price of fairness is too demanding to yield any non-trivial guarantee for some
fairness notions, as we will see, it does provide meaningful guarantees for other notions.

The majority of our results can be found in Table 6.1; we highlight a subset of these next.
For the price of EF1, we provide a lower bound of ⌦(

p
n) and an upper bound of O(n).

We then show that two common methods for obtaining an EF1 allocation—the round-robin
algorithm and MNW—have a price of fairness of linear order (for round-robin the price
is exactly n), implying that these methods cannot be used to improve the upper bound for
EF1. On the other hand, if we allow dependence on the number of goods m, the price of
round-robin, and therefore the price of EF1, is O(

p
n log(mn))—this means that the ⌦(

p
n)

lower bound is almost tight unless the number of goods is huge compared to the number of
agents. Our result illustrates a clear di�erence between EF1 and envy-freeness, as the price
of the latter is ⇥(n) [67]. For MNW, MEW, and leximin, we prove an asymptotically tight
bound of ⇥(n) on the price of fairness. Moreover, with the exception of EF1 and MNW, we
establish exactly tight bounds in the case of two agents for all fairness notions—in particular,
the price of EF1 is between 1.14 and 1.16, implying that there exists an EF1 allocation whose

1From the above example, one may think that such scenarios are rare exceptions. However, for envy-
freeness, these scenarios are in fact common if the number of goods is not too large compared to the number
of agents [78, 117].

2Indeed, the instance that Caragiannis et al. used to show that the price of proportionality is at least n �
1 + 1/n admits no envy-free allocation. Thus, it is still possible that the price of envy-freeness is lower than
the price of proportionality for indivisible goods.

6.1. INTRODUCTION 53

General n n = 2

EF1 LB: ⌦(
p
n) (Theorem 6.2) LB: 8/7 (Theorem 6.3)

UB: O(n) (Theorem 6.8) UB: 2/
p
3 (Theorem 6.4)

EFX — 3/2 (Theorem 6.5)
Round-robin n (Theorem 6.8) 2 (Theorem 6.8)
Balancedness ⇥(

p
n) (Theorem 6.11) 4/3 (Theorem 6.12)

MNW ⇥(n) (Theorem 6.15) LB: 27/23 (Theorem 6.17)UB: 5/4
MEW ⇥(n) (Theorem 6.15) 3/2 (Theorem 6.18)

Leximin ⇥(n) (Theorem 6.15) 3/2 (Theorem 6.19)
PO 1 (Discussion at the beginning of Section 6.7)

(a) Results for price of fairness.
General n n = 2

EF1 1 (Theorem 6.6)
EFX — 1 (Theorem 6.6)

Round-robin n2 (Theorem 6.10) 4 (Theorem 6.10)
Balancedness 1 (Theorem 6.13)

MNW ⇥(n) (Theorem 6.15) LB: 27/23 (Theorem 6.17)UB: 5/4
MEW 1 for n � 3 (Theorem 6.16) 3/2 (Theorem 6.18)

Leximin ⇥(n) (Theorem 6.15) 3/2 (Theorem 6.19)
PO ⇥(n2) (Theorem 6.21) 3 (Theorem 6.22)

(b) Results for strong price of fairness.

Table 6.1: Summary of our results. LB denotes lower bound and UB denotes upper bound.
We do not consider the (strong) price of EFX for general n because it is not known whether
an EFX allocation always exists for n > 3. If we allow dependence on the number of goods
m, we have an upper bound of O(

p
n log(mn)) on the price of EF1; see Theorem 6.9.

welfare is close to the optimal welfare.
Our results point to round-robin as a promising allocation method: besides producing

an EF1 allocation with high welfare, it is extremely simple and intuitive, and an alloca-
tion that it produces is always balanced.3 Most of our upper bounds naturally give rise to
polynomial-time algorithms for computing an allocation satisfying the fairness notion with
the guaranteed welfare. However, there are two notable exceptions:4 (i) the proof of Theo-
rem 6.5 requires an agent to partition the goods into two bundles such that her utilities for the
bundles are as equal as possible, an NP-hard problem; (ii) the upper bound in Theorem 6.10,
which relies on Lemma 6.7, is based on a randomized approach and does not indicate how
a desirable round-robin ordering can be e�ciently chosen.

On the strong price of fairness front, we show via a simple instance that the strong price
of EF1 and balancedness are infinite, meaning that there are arbitrarily bad EF1 and balanced
allocations. Nevertheless, a round-robin allocation, which satisfies these two properties, al-

3Moreover, a round-robin allocation is likely to be envy-free and proportional as long as the number of
goods is su�ciently larger than the number of agents [118].

4In addition to these exceptions, MNW, MEW, and leximin allocations are hard to compute regardless of
price of fairness considerations; see, e.g., [132, Footnote 7].

54 CHAPTER 6. PRICE OF FAIRNESS

ways has welfare within a factor n2 of the optimal allocation, and this factor is exactly tight.
For MNW and leximin, the strong price of fairness, like the price of fairness, is of linear
order—hence, these two notions provide a better worst-case guarantee than the round-robin
algorithm. However, while the price of MEW is also ⇥(n), the strong price of MEW is
infinite for n � 3 (and 3/2 for n = 2), meaning that an MEW allocation does not provide
any welfare guarantee when there are at least three agents. Finally, we consider Pareto opti-
mality, for which the price of fairness is trivially 1, and show that the strong price of Pareto
optimality is ⇥(n2). This demonstrates that an allocation that is optimal in the Pareto sense
may be quite far from optimal with respect to social welfare.

6.1.1 Related Work

As we mentioned earlier, the price of fairness was introduced independently by Bertsimas
et al. [40] and Caragiannis et al. [67]. Bertsimas et al. studied the concept for divisible
goods with respect to fairness notions such as proportional fairness and max-min fairness;
in particular, their results on proportional fairness imply that the price of EF and the price of
MNW for divisible goods are both⇥(

p
n).5 Caragiannis et al. presented a number of bounds

for both goods and chores, both when these items are divisible and indivisible. The price of
fairness has subsequently been examined in several other settings, including for contiguous
allocations of divisible goods [11], indivisible goods [150], and divisible chores [99], as
well as in the context of machine scheduling [44] and budget division [125].

Typically, the price of fairness study focuses on quantifying the e�ciency loss solely in
terms of the number of agents. A notable exception to this is Kurz [109], who remarked
that certain constructions used to establish worst-case bounds for indivisible goods require
a large number of goods. Kurz investigated the dependence of the price of fairness on both
the number of agents and the number of goods, and, as we do for the price of round-robin,
found that the price indeed improves significantly if we limit the number of goods.

After the publication of the initial version of our work, Barman et al. [29] devised an
algorithm that produces an allocation with social welfare within O(

p
n) of the optimum;

together with our result, this implies that the price of EF1 is in fact ⇥(
p
n). Their algorithm

works by starting with an optimal allocation, arranging the goods on a line so that each
bundle in this allocation is connected, giving each agent her favourite good from her bundle,
and updating the allocation by carefully assigning additional items so as to maintain EF1
and connectivity on the line. Moreover, their algorithm can be extended to the more general
setting where agents have subadditive utilities.

6.2 Preliminaries

Consider an indivisible goods instance hN,M,Ui, including the set of n agents N , the set of
m indivisible goods M , and the agents’ utility functions U = {u1, u2, . . . , un}, as described

5Interestingly, this stands in contrast to our result that the price of MNW for indivisible goods is ⇥(n).

6.3. ENVY-FREENESS RELAXATIONS 55

in Section 2.2. In this chapter, the agents’ utilities are additive. Following Caragiannis et al.
[67], we normalize the utilities across agents by assuming that ui(M) = 1 for all i 2 N .

A property P is a function that maps every instance I to a (possibly empty) set of allo-
cations P (I). Every allocation in P (I) is said to satisfy property P .

We are now ready to define the price of fairness concepts.

Definition 6.1. For any given propertyP of allocations and any instance, we define the price
of P for that instance to be the ratio between the optimal social welfare and the maximum
social welfare over allocations satisfying P :

Price of P for instance I =
OPT(I)

maxM2P (I) SW(M)
.

The overall price of P is then defined as the supremum price of fairness across all instances.
Similarly, the strong price ofP for a given instance is the ratio between the optimal social

welfare and the minimum social welfare over allocations satisfying P :

Strong price of P for instance I =
OPT(I)

minM2P (I) SW(M)
.

The overall strong price of P is then defined as the supremum price of fairness across all
instances.

We will only consider properties P such that P (I) is non-empty for every instance I , so
the (strong) price of fairness is always well-defined. Specifically, we will consider the fol-
lowing fairness properties: EF1, EFX, round-robin, balancedness, as well as several welfare
maximizers including MNW, MEW, and leximin; see definitions in Section 2.2. For EFX,
the existence question is still unresolved [69, 135]. As such, we will only consider EFX in
the case of two agents, for which existence is guaranteed [132].6 Moreover, even though
Pareto optimality (Definition 2.12) is an e�ciency notion rather than a fairness notion, we
also consider it in this chapter as it is a fundamental property in the context of resource al-
location. Finally, with the exception of Theorem 6.9, we will be interested in the price of
fairness as a function of n, and assume that m can be arbitrary.

6.3 Envy-Freeness Relaxations

In this section, we consider envy-freeness relaxations and begin with a general lower bound
on the price of EF1.

Theorem 6.2. The price of EF1 is ⌦(
p
n).

Proof. Let m = n, r = b
p
nc, and assume that the utilities are as follows:

• For i = 1, 2, . . . , r � 1: ui((i � 1)r + j) = 1
r for j = 1, 2, . . . , r, and ui(j) = 0

otherwise.
6Recently, Chaudhury et al. [72] showed that the existence is also guaranteed for three agents.

56 CHAPTER 6. PRICE OF FAIRNESS

• ur(j) =
1

n�r(r�1) for j = r(r � 1) + 1, . . . , n, and ur(j) = 0 otherwise.

• For i = r + 1, . . . , n: ui(j) =
1
n for all j.

Consider the allocation that assigns goods ir�r+1, . . . , ir to agent i for i = 1, . . . , r�1
and the remaining goods to agent r. The social welfare of this allocation is r. On the other
hand, in any EF1 allocation, each of the agents i = r + 1, . . . , n must receive at least one
good—otherwise some agent would receive at least two goods and agent i would envy her.
This means that the social welfare is at most r · 1

r + (n� r) · 1
n < 2. Hence the price of EF1

is at least r
2 = b

p
nc
2 .

For two agents, we establish an almost tight bound on the price of EF1 and a tight bound
on the price of EFX. We start with a lower bound for EF1.

Theorem 6.3. For n = 2, the price of EF1 is at least 8
7 ⇡ 1.143.

Proof. Let m = 3 and 0 < ✏ < 1/6, and assume that the utilities are as follows:

• u1(1) = 1/3� 2✏, u1(2) = 1/3 + ✏, u1(3) = 1/3 + ✏;

• u2(1) = 0, u2(2) = 1/2, u2(3) = 1/2.

The optimal social welfare is 4/3 � 2✏, achieved by assigning the first good to agent 1
and the last two goods to agent 2. However, in any EF1 allocation the last two goods cannot
both be given to agent 2. Hence the social welfare of an EF1 allocation is at most (1/3 �
2✏) + (1/3 + ✏) + 1/2 = 7/6 � ✏. Taking ✏ ! 0, we find that the price of EF1 is at least
4/3
7/6 = 8/7.

We now turn to the upper bound. In order to construct an EF1 allocation with high
welfare, we proceed in a similar manner to the adjusted winner procedure [55], which is
used to allocate divisible goods between two agents. Specifically, we arrange the goods
according to the ratios between the utilities that they yield for the two agents—the idea is
that the agents will then prefer goods at di�erent ends. Roughly speaking, we then let the
agent who obtains a lower utility in an optimal allocation choose a minimal set of goods for
which she is EF1 starting from her end.

Theorem 6.4. For n = 2, the price of EF1 is at most 2p
3
⇡ 1.155.

Proof. Consider an arbitrary instance. Sort the goods so that u1(1)
u2(1)

� u1(2)
u2(2)

� · · · � u1(m)
u2(m) ;

goods x such that u2(x) = 0 are put at the front and those with u1(x) = 0 at the back,
with arbitrary tie-breaking within each group of goods. Goods that yield zero value to both
agents can be safely ignored since they have no e�ect on the optimal welfare or the maximum
welfare of an EF1 allocation. For ease of notation, for any 1 k m we write L(k) :=

{1, 2, . . . , k} and R(k) := {k, . . . ,m}. We also define L(0) = R(m+ 1) = ;.
Let S1 :=

n
i | u1(i)

u2(i)
> 1
o
= L(s) for some 0 s m and S2 := M \S1 = R(s+1). It

is easy to see that s < m. If s = 0, both agents have identical utilities and the price of EF1

6.3. ENVY-FREENESS RELAXATIONS 57

Algorithm 7: EF1-Two-Agents(N,M, u1, u2)
1 Assume that in an optimal allocation, agent 1 obtains no higher utility than agent 2.

(Otherwise, reverse the roles of the two agents.)
2 Sort the goods so that u1(1)

u2(1)
� u1(2)

u2(2)
� · · · � u1(m)

u2(m) .
3 for k = 1, 2, . . . ,m do
4 L(k) {1, . . . , k}
5 R(k) {k, . . . ,m}
6 s 0

7 while s < m and u1(s+1)
u2(s+1) > 1 do s s+ 1

8 f s
9 while u1(L(f)) < u1(R(f + 2)) do f f + 1

10 return (L(f), R(f + 1))

is 1, so we may assume that s > 0. The allocation S = (S1, S2) is an optimal allocation,
and the optimal social welfare is u1(S1) + u2(S2). Without loss of generality, assume that
u1(S1) u2(S2). Note that we must have u2(S2) � 1/2, since otherwise both u1(S1) and
u2(S2) are smaller than 1/2 and switching S1 and S2 would yield a higher social welfare.
We can further assume that u1(S1) < 1/2, because otherwise S is also an EF1 allocation
and the price of EF1 is 1.

Next, we describe how to obtain a particular EF1 allocation F . Let f be the smallest
index such that f � s and u1(L(f)) � u1(R(f + 2)). Clearly, f < m. In the allocation
F = (F1, F2), we assign the goods F1 := L(f) to agent 1, and F2 := R(f + 1) to agent 2.
The pseudocode for computing F is presented as Algorithm 7. See also Figure 6.1.

s f

S1 S2

F1 F2

Figure 6.1: Illustration for the proof of Theorem 6.4.

Allocation F satisfies EF1 The EF1 condition is satisfied for agent 1, because u1(F1) �
u1(F2 \ {f + 1}) by definition.

For agent 2, since f is the smallest index such that f � s and u1(L(f)) � u1(R(f +2)),
we have either f = s or u1(L(f � 1)) < u1(R(f +1)). If f = s, then F coincides with the
optimal allocation S , and u2(F2) = u2(S2) � 1/2. Clearly EF1 is satisfied. Else, f > s,
and we have 0 < u1(L(f�1)) < u1(R(f+1)). Note also that u2(R(f+1)) > 0. Therefore,

u1(L(f � 1))

u2(L(f � 1))
� u1(f � 1)

u2(f � 1)
� u1(f + 1)

u2(f + 1)
� u1(R(f + 1))

u2(R(f + 1))
,

where we take a fraction to be infinite if it has denominator 0.7 (None of the fractions can
have both numerator and denominator 0.) Since u1(L(f � 1)) < u1(R(f +1)), this implies

7To see the first and third inequalities, one may prove by induction that in general, if we have a1
b1
� · · · �

58 CHAPTER 6. PRICE OF FAIRNESS

that
u2(L(f � 1))

u2(R(f + 1))
 u1(L(f � 1))

u1(R(f + 1))
< 1.

Thus,
u2(F2) = u2(R(f + 1)) > u2(L(f � 1)) = u2(F1 \ {f}),

implying that EF1 is again satisfied.

The price of EF1 for this instance is at most 2p
3

Now we analyze the social welfare of
the allocation F and compare it to the optimal social welfare.

If f = s, the price of EF1 is 1. Assume from now on that f > s. We have u1(F2) >

u1(L(f � 1)) � u1(L(s)) = u1(S1) and u1(S2)
u2(S2)

� u1(F2)
u2(F2)

. Since u1(F2) > 0, we also have
u1(S2) > 0. Moreover, u2(F2), u2(S2) > 0. Thus,

u1(F1) + u2(F2) � (1� u1(F2)) +
u1(F2)u2(S2)

u1(S2)

= 1 +

✓
u2(S2)

u1(S2)
� 1

◆
u1(F2)

> 1 +

✓
u2(S2)

u1(S2)
� 1

◆
u1(S1)

= 1� u1(S1) +
u2(S2)

u1(S2)
· u1(S1)

= 1� u1(S1) +
u2(S2)

1� u1(S1)
· (1 + (u1(S1)� 1))

= 1� u1(S1) +
u2(S2)

1� u1(S1)
� u2(S2).

Therefore the ratio between the optimal social welfare and the social welfare of F is

↵ :=
u1(S1) + u2(S2)

u1(F1) + u2(F2)
<

u1(S1) + u2(S2)
u2(S2)

1�u1(S1)
+ 1� u2(S2)� u1(S1)

.

We further analyze the last expression. First, taking its partial derivative with respect to
u2(S2) gives

(1� u1(S1))(1� 2u1(S1))

(u1(S1)2 + u1(S1)(u2(S2)� 2) + 1)2
,

which is always positive when u1(S1) < 1/2. This shows that the last expression is mono-
tone increasing in u2(S2). Thus

↵ <
u1(S1) + 1
1

1�u1(S1)
� u1(S1)

.

Finally, this expression is maximized when u1(S1) = 2 �
p
3 and yields a value of 2p

3
,

completing the proof.
ak
bk

, then a1
b1
� a1+···+ak

b1+···+bk
� ak

bk
. The case k = 2 holds because a1

b1
� a1+a2

b1+b2
is equivalent to a1

b1
� a2

b2
, and

similarly for a1+a2
b1+b2

� a2
b2

.

6.3. ENVY-FREENESS RELAXATIONS 59

The gap on the price of EF1 between Theorems 6.3 and 6.4 is only approximately 0.01.
For EFX, we establish a tight bound in the case of two agents.

Theorem 6.5. For n = 2, the price of EFX is 3/2.

Proof. Lower bound: Let m = 3 and 0 < ✏ < 1/2, and assume that the utilities are as
follows:

• u1(1) = 1/2 + ✏, u1(2) = 1/2� ✏, u1(3) = 0;

• u2(1) = 1/2 + ✏, u2(2) = 0, u2(3) = 1/2� ✏.

The optimal social welfare is 3/2�✏, achieved by assigning the first two goods to agent 1
and the last good to agent 2. On the other hand, in any EFX allocation, no agent can get both
of the goods that they positively value. Hence, the social welfare of an EFX allocation is at
most 1. Taking ✏! 0, we find that the price of EFX is at least 3/2.

Upper bound: Consider an arbitrary instance. If in an optimal allocation both agents get
utility at least 1/2, this allocation is also envy-free and hence EFX, so the price of EFX is 1.
Otherwise, the maximum welfare is at most 1+1/2 = 3/2. Now we show that there always
exists an EFX allocation with social welfare at least 1; this immediately yields the desired
bound.

Let the first agent partition the goods into two bundles such that her values for the bundles
are as equal as possible. Denote by x and 1 � x the values of the two bundles, where
x � 1 � x. Suppose that all goods of zero value, if any, are in the second bundle. Let
y � 1 � y be the corresponding values for the second agent, and assume without loss of
generality that y � x. Consider the partition of the first agent, and assume that the two
bundles yield value z and 1� z to the second agent, respectively. If z 1� z, by assigning
the first bundle to the first agent and the second bundle to the second agent, we have an
envy-free allocation with welfare at least 1. Else, z � 1 � z. By definition of y, we also
have z � y � x. We assign the first bundle to the second agent and the second bundle to
the first agent. The second agent is clearly envy-free. If the first agent still has envy after
removing some good i from the first bundle, then by moving good i to the second bundle,
we create a more equal partition, a contradiction. Hence the allocation is EFX to the first
agent. The social welfare of this allocation is z + (1� x) � 1.

Next, we give a simple instance showing that EF1 and EFX allocations can have arbi-
trarily bad welfare.

Theorem 6.6. The strong price of EF1 is1. For n = 2, the strong price of EFX is1.

Proof. Let m = n, and assume that ui(i) = 1 for all i and ui(j) = 0 otherwise. The
allocation that assigns good i to agent i for every i has social welfare n. On the other hand,
the allocation that assigns good i � 1 to agent i for i = 2, . . . , n and good n to agent 1 is
EF1 and EFX, but has social welfare 0. The conclusion follows.

60 CHAPTER 6. PRICE OF FAIRNESS

6.4 Round-Robin Algorithm

We now turn our attention to the round-robin algorithm, which always produces an EF1
allocation. We show that it is always possible to order the agents to obtain a welfare of 1.

Lemma 6.7. For any instance, there exists an ordering of the agents such that the round-
robin algorithm implemented with this ordering produces an allocation with social welfare
at least 1, and this bound is tight.

Proof. We claim that if we choose the ordering of the agents uniformly at random, the ex-
pected social welfare is at least 1. The desired bound immediately follows from this claim.

To prove the claim, consider an arbitrary agent i, and assume without loss of generality
that ui(1) � ui(2) � · · · � ui(m). Note that if the agent is ranked j-th in the ordering, her
utility is at least ui(j)+ui(n+ j)+ui(2n+ j)+ · · ·+ui(kn+ j), where k = b(m� j)/nc.
Hence, the agent’s expected utility is at least

1

n
·

nX

j=1

b(m�j)/ncX

r=0

ui(rn+ j) =
1

n
·

mX

j=1

ui(j) =
1

n
.

It follows from the linearity of expectation that the expected social welfare is at leastn· 1n = 1,
as claimed.

The tightness of the bound follows from the instance where every agent has utility 1 for
the same good.

Lemma 6.7 yields a linear price of fairness for round-robin.

Theorem 6.8. The price of round-robin is n. Consequently, the price of EF1 is at most n.

Proof. Upper bound: Consider an arbitrary instance. Since every agent receives utility at
most 1, the optimal social welfare is at most n. On the other hand, by Lemma 6.7, there
exists an ordering of the agents such that the round-robin algorithm yields welfare at least
1. Hence the price of round-robin is at most n.

Lower bound: Let m = xn for some large x that is divisible by n, and assume that the
utilities are such that for each agent i, ui(j) = 1/xi for j = 1, 2, . . . , xi and ui(j) = 0

otherwise.

Consider the allocation that assigns goods 1, 2, . . . , x to agent 1, and xi�1 +1, . . . , xi to
agent i for every i � 2. In this allocation, agent 1 gets utility 1, while each remaining agent
gets utility (xi � xi�1)/xi = 1� 1/x. The social welfare is therefore n� (n� 1)/x. This
converges to n for large x.

On the other hand, consider the round-robin algorithm with an arbitrary ordering of the
agents, and assume without loss of generality that agents always break ties in favour of goods
with lower numbers. Hence, regardless of the ordering, the goods get chosen in the order
1, 2, . . . ,m. As a result, every agent gets exactly 1/n of their valued goods, so her utility is
1/n, and the social welfare is 1. Hence the price of round-robin is n.

6.4. ROUND-ROBIN ALGORITHM 61

The argument for the lower bound in Theorem 6.8 works even if we can choose a new
ordering of the agents in every round. This means that the fixed order is not a barrier to
obtaining a better price of fairness, but rather the “each agent picks exactly once in every
round” aspect of the algorithm.

One may notice that the lower bound construction uses an exponential number of goods.
This is in fact necessary to obtain an instance with a high price of round-robin. As we show
next, the ⌦(

p
n) lower bound on the price of EF1 is almost tight as long as m is not too large

compared to n. At a high level, our proof proceeds by considering an optimal allocation and
choosing a range

⇥
2�`�1, 2�`

⇤
that the largest number of agents’ utilities for goods in this

allocation fall into. In the case where a su�ciently large number of goods correspond to this
range, we may choose an arbitrary round-robin ordering—we can lower bound the welfare
resulting from the round-robin algorithm by observing that as long as we have not run out
of goods from this range with respect to an agent, every pick must give the agent a utility at
least the minimum utility that the agent obtains from this range. On the other hand, if only
a small number of goods belong to this range, we need to be more careful in choosing the
ordering.

Theorem 6.9. The price of round-robin is O(
p
n log(mn)). Consequently, the price of EF1

is O(
p
n log(mn)).

Proof. Consider any instance I . First, observe that if OPT(I) 65
p
n log2(mn), then

Lemma 6.7 immediately yields the desired result. We therefore focus on the case where
OPT(I) > 65

p
n log2(mn). We claim that there exists an ordering for which the round-

robin algorithm produces an allocation with social welfare at least OPT(I)
65

p
n log2(mn) .

Fix an optimal allocation M = (M1,M2, . . . ,Mn), and let r := dlog2(m
p
n)e. For

each i 2 N , let us partition Mi into M0
i [M1

i [· · · [M r
i , where M `

i is defined by

M `
i =

8
<

:

�
j 2Mi | ui(j) 2

�
2�`�1, 2�`

⇤
if ` 6= r;

�
j 2Mi | ui(j) 2

⇥
0, 2�`

⇤
if ` = r.

Furthermore, define M ` :=
Sn

i=1 M
`
i and SW`(M) :=

Pn
i=1 ui(M `

i).
Let `⇤ := argmax`2{0,...,r�1} SW`(M). We have

SW`⇤(M) � 1

r

r�1X

`=0

SW`(M)

!
=

OPT(I)� SWr(M)

r
.

However, since agent i values each item in M r
i at most 2�r 1

m
p
n , we have ui(M r

i)
1/
p
n. This implies that SWr(M)

p
n, which is no more than OPT(I)/65. Hence,

SW`⇤(M) � 64

65r
· OPT(I) � 32 · OPT(I)

65 log2(mn)
. (6.1)

Thus, it su�ces to show the existence of an ordering such that round-robin produces an
allocation with social welfare at least SW`⇤(M)/

p
n.

62 CHAPTER 6. PRICE OF FAIRNESS

Observe that Equation (6.1) implies that SW`⇤(M) > 32
p
n. We now consider two

cases, based on T :=
��M `⇤

��. Since ui(M `⇤
i) 2�`⇤

��M `⇤
i

�� for each i, we have SW`⇤(M)
2�`⇤T .

Case 1: T > 2n. In this case, we will show that the round-robin algorithm with arbitrary
ordering yields an allocation with social welfare at least SW`⇤(M)/

p
n.

To see this, let us consider the round-robin procedure with arbitrary ordering, and con-
sider the set of goods that are picked in the first t := bT/(2n)c rounds; let St ✓ M denote
this set. Now, observe that

Pn
i=1

��M `⇤
i \ St

�� � T � |St| = T � n · t � T/2. This implies
that

nX

i=1

ui

�
M `⇤

i \ St

�
� T

2
· 2�`⇤�1 � SW`⇤(M)

4
> 8
p
n.

Since ui

�
M `⇤

i \ St

�
 1, there must be more than 8

p
n agents such that M `⇤

i * St. Let N⇤

denote the set of such agents.

We claim that, in each of the first t rounds, every agent i 2 N⇤ must receive an item she
values at least 2�`⇤�1. The reason is that agent i picks her favourite good, which she must
value at least as much as the good(s) left unpicked in M `⇤

i \ St. Moreover, she values the
latter at least 2�`⇤�1, so this must also be a lower bound of her utility for the former.

From the claim in the previous paragraph, we can conclude that the social welfare of the
allocation produced is at least

|N⇤| · t · 2�`⇤�1 > 8
p
n · T

4n
· 2�`⇤�1 � SW`⇤(M)p

n

as desired. Note that we use the assumption T > 2n to conclude that t � T/(4n) in the first
inequality above.

Case 2: T 2n. In this case, we will show that if we choose the ordering ⇡ in a careful
manner, then the social welfare obtained in the first round alone already su�ces.

Similarly to Case 1, observe that since
Pn

i=1 ui

�
M `⇤

i

�
= SW`⇤(M) > 8

p
n, there are

more than 8
p
n agents i whose M `⇤

i is non-empty. Let N⇤ denote the set of such agents.

We will construct the ordering ⇡ step-by-step as follows. For k = 1, 2, . . . , d4
p
ne, we

let ⇡(k) be any agent i such that (1) i is not yet in the ordering, and (2) not all goods in M `⇤
i

are already picked by ⇡(1), . . . , ⇡(k � 1). Note that such an agent exists because, at each
step k, at most two candidate agents become invalid: the agent i = ⇡(k), and the agent i0

whose good in M `⇤
i0 is picked by ⇡(k). Since we start with 8

p
n valid candidates, even after

d4
p
ne � 1 steps, there are still valid candidate agents to be chosen from.

The remainder of the ordering can be chosen arbitrarily. We now argue that the resulting
round-robin allocation has the desired social welfare. To see this, for k = 1, . . . , d4

p
ne,

observe that agent ⇡(k) must pick a good that is worth at least 2�`⇤�1 to her in the first round,
since not all goods in M `⇤

⇡(k) have been picked. As a result, the social welfare is at least

(4
p
n) · 2�`⇤�1 � (2T/

p
n) · 2�`⇤�1 � SW`⇤(M)p

n
,

6.5. BALANCEDNESS 63

where the first inequality follows from T 2n.

While Theorem 6.9 shows that the price of EF1 is close to ⇥(
p
n) unless the number of

goods is huge, if we are only interested in the dependence on the number of agents, the gap
still remains between ⌦(

p
n) and O(n).

We end this section by establishing an exact bound on the strong price of round-robin.

Theorem 6.10. The strong price of round-robin is n2.

Proof. Upper bound: Consider an arbitrary instance. Since every agent receives utility
at most 1, the optimal social welfare is at most n. On the other hand, in the round-robin
algorithm, the first agent gets to choose an item ahead of all other agents in every round
and therefore does not envy any other agent in the resulting allocation. This implies that
her utility, and hence the social welfare, is at least 1/n. It follows that the strong price of
round-robin is at most n2.

Lower bound: Let m be a large number divisible by n, and assume that the utilities are as
follows:

• u1(i) =
1
m for all i;

• for i = 2, . . . , n: ui(i� 1) = 1, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i � 1 to agent i for every i = 2, . . . , n, and
the remaining goods to agent 1. In this allocation, every agent i � 2 receives utility 1.
Agent 1 receives utility m�n+1

m , which converges to 1 for large m. Therefore, the social
welfare converges to n.

On the other hand, consider the round-robin algorithm with the ordering of the agents
1, 2, . . . , n, and assume without loss of generality that agents always break ties in favour
of goods with lower numbers. The first agent gets utility exactly 1/n, while the remaining
agents get zero utility since their only valuable good is “stolen” by the agent before them
in the first round. Hence the social welfare is 1/n. This means that the strong price of
round-robin is n2, as desired.

6.5 Balancedness

In this section, we consider balancedness. We begin by establishing an asymptotically tight
bound on the price of balancedness.

Theorem 6.11. The price of balancedness is ⇥(
p
n).

Proof. Intuitively, for the upper bound, we divide the agents into two groups according
to whether they receive a su�ciently large number of goods in an optimal allocation or
not. There cannot be too many agents in the first group, and therefore they cannot make a
significant contribution to the optimal welfare, so we may ignore them. For agents in the

64 CHAPTER 6. PRICE OF FAIRNESS

second group, we let each of them keep some number of goods that they like most; we choose
this number so that it is possible to redistribute the remaining goods and obtain a balanced
allocation.

Lower bound: Consider the instance in Theorem 6.2. The social welfare can be as high as
r = b

p
nc, while a similar argument shows that the social welfare of any balanced allocation

is at most 2. The conclusion follows.

Upper bound: If OPT(I) 4
p
n, the result follows immediately from Lemma 6.7. We

therefore assume that OPT(I) > 4
p
n. We claim that for any instance I , the maximum

social welfare of a balanced allocation is always within a factor 4
p
n of the optimal social

welfare; this claim implies the desired upper bound. In fact, we will show that there is a
balanced allocation M such that SW(M) � OPT(I)�

p
n

2
p
n ; this su�ces for our claim because

OPT(I)�
p
n

2
p
n � OPT(I)

4
p
n . We consider two cases.

Case 1: m � n. Fix an optimal allocation, and let A be the set of agents who receive
at least mp

n goods in the optimal allocation, and B the complement set of agents. Since
there are at most

p
n agents in A, they contribute at most

p
n to OPT(I), so the agents in B

contribute at least OPT(I)�
p
n. We let each agent in B keep her

⌃
m
2n

⌥
most valuable goods

(or all of her goods, if she has fewer than this number of goods). Note that each such agent
keeps at least a

⌃
m
2n

⌥
/ mp

n �
1

2
p
n fraction of her goods. Since the agents in B originally have

a total utility of at least OPT(I) �
p
n, the utility of the kept goods is at least OPT(I)�

p
n

2
p
n .

Moreover, since
⌃
m
2n

⌥

⌅
m
n

⇧
due to the assumption m � n, the remaining goods can be

reallocated to obtain a balanced allocation, which has social welfare at least OPT(I)�
p
n

2
p
n .

Case 2: m < n. Fix an optimal allocation, and let A be the set of agents who receive
at least

p
n goods in the optimal allocation, and B the complement set of agents. Since

there are at most
p
n agents in A, they contribute at most

p
n to OPT(I), so the agents in

B contribute at least OPT(I) �
p
n. We let each agent in B keep her most valuable good

(if she receives at least one good). By a similar reasoning as in Case 1, this yields a total
utility of at least OPT(I)�

p
np

n . The remaining goods can be reallocated to obtain a balanced
allocation, which has social welfare at least OPT(I)�

p
np

n � OPT(I)�
p
n

2
p
n .

For two agents, we give an exact bound on the welfare that can be lost due to imposing
balancedness.

Theorem 6.12. For n = 2, the price of balancedness is 4/3.

Proof. Lower bound: Let m be a large even number, and assume that the utilities are as
follows:

• u1(1) = 1 and u1(i) = 0 otherwise;

• u2(i) =
1
m for all i.

6.6. WELFARE MAXIMIZERS 65

Consider the allocation that assigns the first good to the first agent and the remaining
goods to the second agent. The social welfare is 1 + (1 � 1/m), which converges to 2 for
large m. On the other hand, in any balanced allocation, the first agent gets utility at most 1
while the second agent gets utility m

2 · 1
m = 1

2 , so the social welfare is at most 3/2. Hence
the price of balancedness is at least 4/3.

Upper bound: Consider an arbitrary instance. If m is odd, we may add a dummy good
that yields zero utility to both agents—this does not change the optimal social welfare or the
maximum social welfare of a balanced allocation. We may therefore assume that m is even.

Sort the goods so that u1(1) � u2(1) � u1(2) � u2(2) � · · · � u1(m) � u2(m). Let
s be the last good such that u1(s) � u2(s) � 0, and assume without loss of generality that
s � m/2. An optimal allocation assigns the set of goods S1 = {1, 2, . . . , s} to the first agent
and the complement set S2 to the second agent, yielding social welfare u1(S1) + u2(S2) =

u1(S1) + (1 � u2(S1)) = 1 + �, where � := u1(S1) � u2(S1) � 0. On the other hand,
consider the balanced allocation that assigns goods 1, 2, . . . ,m/2 to the first agent and the
remaining goods to the second agent. Note that at most half of the goods in S1 are reallocated
to the second agent, and these are the goods with the lowest di�erence in utility between the
two agents. Hence, the utility loss going from the first to the second allocation is at most
�/2, implying that the social welfare of the second allocation is at least 1 + �

2 . The price
of balancedness is therefore at most

sup
0�1

1 +�

1 + �
2

.

This ratio is increasing in � and reaches the maximum at � = 1, where its value is 4/3,
completing the proof.

Finally, the same construction as in Theorem 6.6 shows that balanced allocations can
have arbitrarily bad welfare.

Theorem 6.13. The strong price of balancedness is1.

6.6 Welfare Maximizers

In this section, we consider allocations that maximize di�erent measures of welfare. To start
with, we show that every MNW and leximin allocation yields a decent welfare.

Lemma 6.14. For any instance, every MNW allocation and every leximin allocation has
social welfare at least 1, and both bounds are tight.

Proof. We first establish the bound for MNW. Consider any MNW allocation where agent
i receives bundle Mi, and assume for contradiction that

Pn
k=1 uk(Mk) < 1. Fix any agent

i. Since the agent has utility 1 for the entire set of items, we have
Pn

k=1 ui(Mk) = 1. If

66 CHAPTER 6. PRICE OF FAIRNESS

ui(Mk) uk(Mk) for all k = 1, 2, . . . , n, we would have

1 =
nX

k=1

ui(Mk)
nX

k=1

uk(Mk) < 1,

a contradiction, so there exists j 6= i such that ui(Mj) > uj(Mj). Construct a directed
graph with vertices 1, 2, . . . , n, and add an edge from i to j if ui(Mj) > uj(Mj). From
the above observation, every vertex has at least one outgoing edge, implying that the graph
consists of a directed cycle. For every edge i! j in the cycle, we give Mj to agent i instead
of agent j. If we consider the change in the multiset of the n utilities between the old and
new allocations, at least one number increases while others remain the same. This means
that either we have decreased the number of agents who get zero utility, or keep this number
fixed and increase the product of utilities of the agents who get nonzero utility. Either case
contradicts the definition of an MNW allocation.

To show the bound for leximin, we apply the same argument. An improvement in the
multiset of utilities as described in the last step contradicts the definition of leximin.

Finally, the tightness of the bounds follows from the instance where every agent has
utility 1 for the same good.

Lemma 6.14 allows us to show that the price of MNW and the strong price of MNW, the
price of MEW, and both prices of leximin are of linear order.

Theorem 6.15. The price of MNW, the strong price of MNW, the price of MEW, the price
of leximin, and the strong price of leximin are ⇥(n).

Proof. We start with MNW. It su�ces to show that the price of MNW is⌦(n) and the strong
price of MNW is O(n).

Lower bound: Let m = n and 0 < ✏ < 1, and assume that the utilities are as follows:

• u1(1) = 1 and u1(j) = 0 otherwise;

• for i = 2, . . . , n: ui(i� 1) = 1� ✏, ui(i) = ✏, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i� 1 to agent i for i = 2, . . . , n, and good n to
agent 1. The social welfare of this allocation is (n�1)(1�✏). On the other hand, the unique
MNW allocation assigns good i to agent i for every i. The social welfare of this allocation
is 1 + (n� 1)✏. Taking ✏! 0, we find that the price of MNW is ⌦(n).

Upper bound: Consider an arbitrary instance. Since every agent receives utility at most
1, the optimal social welfare is at most n. On the other hand, by Lemma 6.14, the social
welfare of any MNW allocation is at least 1. The conclusion follows.

Notice that in the lower bound instance above, the unique MNW allocation is also the
unique MEW allocation as well as the unique leximin allocation. This means that the price
of MEW, the price of leximin, and the strong price of leximin are all ⌦(n).

6.6. WELFARE MAXIMIZERS 67

It remains to show that the price of MEW and the strong price of leximin are O(n). For
leximin, this follows from Lemma 6.14 and the fact that the optimal social welfare is at most
n. We claim that for any instance, there exists a MEW allocation with social welfare at least
1. To prove this claim, we apply the same argument as in Lemma 6.14, but starting with a
MEW allocation with maximum social welfare. An improvement in the multiset of utilities
as described in the argument does not decrease the egalitarian welfare and strictly increases
the social welfare, which gives us the desired contradiction.

Surprisingly, MEW allocations can be arbitrarily bad when there are at least three agents.

Theorem 6.16. For n > 2, the strong price of MEW is infinite.

Proof. Let m = n, and assume that the utilities are as follows:

• u1(1) = 1 and u1(j) = 0 otherwise;

• for i = 2, . . . , n: ui(i� 1) = 1 and ui(j) = 0 otherwise.

Observe that in any allocation, some agent does not get a desired good. This means that
every allocation has egalitarian welfare 0, and all allocations are MEW. Now, there exists an
allocation with social welfare 0, for example the allocation that assigns good i+1 to agent i
for i = 1, 2, . . . , n� 1, and assigns good 1 to agent n. Since there also exists an allocation
with positive social welfare, the strong price of MEW is infinite.

We now turn to the case of two agents. For MNW, we establish almost tight bounds on
both prices of fairness.

Theorem 6.17. For n = 2, the price of MNW and the strong price of MNW are at least
27/23 ⇡ 1.174 and at most 5/4 = 1.25.

Proof. It su�ces to show that the price of MNW is at least 27/23 and the strong price of
MNW is at most 5/4.

Lower bound: Let m = 3 and 0 < ✏ < 1/7, and assume that the utilities are as follows:

• u1(1) = 2/3, u1(2) = 1/3, u1(3) = 0;

• u2(1) = 4/7� ✏, u2(2) = 1/7 + ✏, u2(3) = 2/7.

The optimal social welfare is 9/7, obtained by assigning the first two goods to the first
agent and the last good to the second agent. On the other hand, one can check that the
maximum Nash welfare is 2/7+2✏/3, obtained (uniquely) by assigning the first good to the
first agent and the last two goods to the second agent. This allocation yields social welfare
23/21 + ✏. Taking ✏! 0, we find that the price of MNW is at least 27/23.

68 CHAPTER 6. PRICE OF FAIRNESS

Upper bound: Consider an arbitrary instance. Suppose that the optimal social welfare is x.
If x 5/4, then Lemma 6.14 immediately implies that the price of MNW of this instance
is at most 5/4.

We now focus on the case where x � 5/4. Let us assume further that, in an optimal
allocation, the first agent has utility x1 and the second has utility x2, where x1 � x2 and
x1 + x2 = x. Since x1 1, we have x1/x2 1/(x � 1) 4. Next, consider any
MNW allocation. Suppose that in this allocation the first agent has utility y1 and the second
has utility y2. Since the Nash welfare of this allocation must be at least that of the optimal
allocation, we have y1y2 � x1x2. As a result, the social welfare of this allocation is y1+y2 �
2
p
y1y2 � 2

p
x1x2, where the first inequality follows from (

p
y1 �

p
y2)2 � 0. Thus, the

price of MNW of this instance is at most

x1 + x2

2
p
x1x2

= 1 +
1

2
·
✓

4

r
x1

x2
� 4

r
x2

x1

◆2

 1 +
1

2
·

4
p
4� 4

r
1

4

!2

= 5/4,

where the inequality follows from 1 x1/x2 4.

Finally, we derive the exact bound for MEW and leximin with two agents. Note that
since all leximin allocations are MEW, Theorem 6.18 immediately implies Theorem 6.19.

Theorem 6.18. For n = 2, the price of MEW and the strong price of MEW are 3/2.

Proof. It su�ces to show that the price of MEW is at least 3/2 and the strong price of MEW
is at most 3/2.

Lower bound: Let m = 3 and 0 < ✏ < 1/2, and assume that the utilities are as follows:

• u1(1) = 1/2, u1(2) = 1/2� ✏, u1(3) = ✏;

• u2(1) = 1/2, u2(2) = ✏, u2(3) = 1/2� ✏.

The optimal social welfare is 3/2� 2✏, obtained by assigning the first two goods to the
first agent and the last good to the second agent. On the other hand, the maximum egalitarian
welfare is 1/2, which can be obtained only by assigning the first good to one agent and the
remaining two goods to the other agent. This allocation has social welfare 1. Taking ✏! 0,
we find that the price of MEW is at least 3/2.

Upper bound: Consider an arbitrary instance, and denote by x the maximum egalitarian
welfare. The optimal social welfare is at most 1 + x, and the social welfare of any MEW
allocation is at least 2x. Consider any MEW allocation, and suppose that agent 1 receives
utility x and agent 2 receives utility y � x. In the allocation where the bundles of the two
agents are swapped, the utilities are 1 � x and 1 � y 1 � x. Since x is the maximum
egalitarian welfare, we have x � 1� y, or x+ y � 1. This means that the social welfare of
the original allocation is at least 1, so the social welfare of any MEW allocation is at least
max{2x, 1}.

6.7. PARETO OPTIMALITY 69

The strong price of MEW is therefore at most 1+x
max{2x,1} . If x 1/2, this quantity is at

most 1+x
1

3
2 . On the other hand, if x > 1/2, this quantity is at most 1+x

2x = 1
2x + 1

2 < 3
2 .

The conclusion follows.

Theorem 6.19. For n = 2, the price of leximin and the strong price of leximin are 3/2.

6.7 Pareto Optimality

In this section, we consider Pareto optimality. Since any allocation that maximizes social
welfare is necessarily Pareto optimal, the price of Pareto optimality is trivially 1. By estab-
lishing a tight lower bound on the welfare of a Pareto optimal allocation, we show that the
strong price of Pareto optimality is quadratic. Our result indicates that while Pareto opti-
mality is sometimes referred to as ‘e�ciency’, it does not necessarily fare well if e�ciency
is measured in terms of social welfare.

Lemma 6.20. For any instance, every Pareto optimal allocation has social welfare at least
1/n, and this bound is tight.

Proof. To establish the bound, it su�ces to show that in any Pareto optimal allocation, some
agent receives utility at least 1/n. Suppose that this is not the case. Since the utility of each
agent for the entire set of goods is 1, every agent envies at least one other agent. This implies
that the envy graph, which has the n agents as its vertices and in which there is a directed
edge from one agent to another if the former agent envies the latter, contains a directed cycle.
By giving agent j’s bundle to agent i for every edge i ! j in the cycle, we obtain a Pareto
improvement, a contradiction.

The tightness of the bound follows from the instance in Theorem 6.21.

Theorem 6.21. The strong price of Pareto optimality is ⇥(n2).

Proof. Upper bound: Consider an arbitrary instance. Since every agent receives utility at
most 1, the optimal social welfare is at most n. On the other hand, by Lemma 6.20, every
Pareto optimal allocation has social welfare at least 1/n. The conclusion follows.

Lower bound: Assume that n � 2. Let m = n, 0 < ✏ < 1/n, and assume that the utilities
are as follows:

• u1(1) =
1
n + ✏ and u1(j) =

1
n �

✏
n�1 otherwise;

• for i = 2, . . . , n: ui(i� 1) = 1� ✏, ui(i) = ✏, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i � 1 to agent i for i = 2, . . . , n, and good
n to agent 1. The welfare of this allocation is (n � 1)(1 � ✏) +

�
1
n �

✏
n�1

�
= n � 1 +

1
n �

�
n� 1 + 1

n�1

�
✏. On the other hand, the allocation that assigns good i to agent i for

i = 1, 2, . . . , n is Pareto optimal. This is because in any Pareto improvement, agent 1 must
receive good 1, and it follows that agent i must receive good i for every i. The social welfare
of this allocation is

�
1
n + ✏

�
+(n�1)✏ = 1

n+n✏. Taking ✏! 0 yields the desired result.

70 CHAPTER 6. PRICE OF FAIRNESS

We also show an exact bound for the case of two agents.

Theorem 6.22. For n = 2, the strong price of Pareto optimality is 3.

Proof. The instance in Theorem 6.21 shows that the strong price of Pareto optimality is at
least 3. To show that this is tight, consider an arbitrary instance and an optimal allocation
in this instance. Assume that the two agents receive utility x and y in this allocation, where
x � y. In any Pareto optimal allocation, at least one agent must receive utility at least y;
otherwise the optimal allocation is a Pareto improvement. In combination with Lemma 6.20,
this implies that the social welfare of every Pareto optimal allocation is at leastmax{y, 1/2}.

The strong price of Pareto optimality is therefore at most x+y
max{y,1/2}

1+y
max{y,1/2} . If

y 1/2, this quantity is at most 2(1 + y) 3. On the other hand, if y > 1/2, this quantity
is at most 1+y

y = 1
y + 1 < 3. The conclusion follows.

6.8 Conclusion and Future Work

In this chapter, we have studied the price of fairness for indivisible goods using several fair-
ness notions that can always be satisfied. For most cases, we exhibited tight or asymptotically
tight bounds on the worst-case e�ciency loss that can occur due to fairness constraints. Inter-
estingly, both the round-robin and MNW allocations, which are EF1, can have social welfare
a linear factor away from the optimum—however, round-robin performs significantly better
than this worst-case bound as long as the number of goods is not huge compared to the num-
ber of agents. The linear bound that we obtained for MNW stands in contrast to Bertsimas
et al. [40]’s result in the divisible goods setting, where the price of MNW is ⇥(

p
n).

A potential direction for future work is to perform similar analyses but using egalitarian
welfare instead of utilitarian welfare as the benchmark. This has been done, e.g., in the
context of contiguous allocations [11, 150].

One could also study the price of fairness for the chore division problem, where chores
refer to items that yield negative utility for the agents. Indeed, almost all of the notions that
we consider in the goods setting have direct analogues in the chore setting, and it would
be interesting to see whether the corresponding bounds in the two settings turn out to be
similar as well. Recently, Sun et al. [151] studied this problem; besides EF1 and EFX,
they also considered maximin share (MMS) guarantee (see Definition 2.5), pairwise MMS
guarantee (see, e.g., [69, Definition 4.3]) and their relaxations. Among other results, Sun
et al. provided tight bounds on the price of these notions in the case of two agents and showed
the price of EF1 and EFX is infinite in the case of any number of agents. Their results in the
chore setting are in sharp contrast to ours in the goods setting.

Chapter 7

Price of Connectivity †

7.1 Introduction

Our focus in this chapter is still on the setting where we allocate indivisible goods. This
pertains to the allocation of houses, cars, artworks, electronics, and many other common
items. Perhaps the most well-known fair division protocol is the cut-and-choose protocol,
which dates back to at least the Bible and can be used to allocate a divisible good between two
agents. In this protocol, the first agent divides the good into two equal parts, which is possible
because the good is divisible, and the second agent chooses the part that she prefers. The
cut-and-choose protocol has a direct analogue in the indivisible goods setting: since an equal
partition may no longer exist, the first agent now divides the goods into two parts that are as
equal as possible in her view. The resulting allocation is guaranteed to satisfy both maximin
share guarantee and EF1. In fact, it also satisfies EFX, which is stronger than EF1. However,
these guarantees rely crucially on the assumption that any allocation of the goods to the
two agents can be chosen—in reality, there are often constraints on the allocations that we
desire. One common type of constraints is captured by a model of Bouveret et al. [51], where
the goods are vertices of a connected undirected graph and each agent must be allocated a
connected subgraph. For instance, the goods could represent o�ces in a university building
that we wish to divide between research groups, and it is desirable for each group to receive a
connected set of o�ces in order to facilitate communication within the group. To what extent
do the fairness guarantees continue to hold when connectivity constraints are imposed, and
how does the answer depend on the underlying graph? Put another way, what is the price in
terms of fairness that we have to pay if we desire connectivity?

In this chapter, we make several contributions to the active line of work on fairly al-
locating indivisible goods under connectivity constraints. We survey this line of work in
Section 7.1.1. While we also provide fairness guarantees for any number of agents, the ma-
jority of our results concern the setting of two agents. We emphasize here that this setting
is fundamental in fair division. Indeed, a number of fair division applications including di-
vorce settlements, inheritance division, and international border disputes often fall into this

†This chapter has been published in a paper by Bei, Igarashi, Lu, and Suksompong [35].

71

72 CHAPTER 7. PRICE OF CONNECTIVITY

Class of graphs n = 2 n � 2

Paths
1 if m = 2 1 if m < n

2 if m � 3
m� n+ 1 if n m < 2n� 1

n if m � 2n� 1
Stars m� 1 m� n+ 1

Vertex connectivity 1 k (see caption) m� n+ 1
Vertex connectivity 2 4/3 m� n+ 1

Vertex connectivity � 3 4/3 m� n+ 1

Table 7.1: Summary of our PoC bounds, where n and m denote the number of agents and
goods, respectively. For n = 2 and graphs with vertex connectivity 1 (which include all
trees), the parameter k denotes the maximum number of components that can result from
deleting a single vertex from the graph.

setting, and numerous prominent works in the field deal exclusively with the two-agent case,
e.g., [53, 57, 58, 104]. See also [133] for further discussion on the importance of the two-
agent setting. In addition, as we will see, under connectivity constraints the setting with
two agents is already surprisingly rich and gives rise to several mathematically deep and
challenging questions.

We begin by studying maximin share guarantee for agents with additive utilities. We
define the price of connectivity (PoC) of a graph to be the largest multiplicative gap between
the maximin share defined over all possible partitions and the graph maximin share (G-
MMS), which is defined over all partitions that respect the connectivity constraints of the
graph. For any graph and any number of agents, it follows from the definitions that if the PoC
is ↵ and one can give each agent � times her G-MMS, then it is also possible to guarantee
all agents a �/↵ fraction of their MMS. Moreover, in cases where giving every agent their
full G-MMS is possible (i.e., � = 1), we observe in Section 7.2 that the resulting factor 1/↵
is tight—in other words, the PoC is the reciprocal of the optimal MMS approximation that
can be achieved. Since it is known from prior work that � = 1 for two agents and arbitrary
graphs as well as for any number of agents and trees, our PoC notion precisely captures the
best possible MMS guarantee in these cases. Hence, determining the PoC, whose definition
only involves a single utility function, allows us to identify the optimal MMS guarantee for
agents with possibly di�erent utility functions.

With this relationship in hand, we proceed to determine the PoC of various graphs; our
results are summarized in Table 7.1. In the two-agent case (Section 7.3.1), we show that the
PoC is related to the vertex connectivity of the graph, i.e., the minimum number of vertices
whose deletion disconnects the graph. For graphs with connectivity exactly 1, including all
trees and being significantly richer than the class of trees, we show that the PoC is equal
to the maximum number of connected components that result from deleting one vertex. As
a consequence, the PoC is at least 2 for any graph in this class. On the other hand, we
show an upper bound of 4/3 for all graphs with connectivity at least 2—this bound is tight
for all graphs with connectivity exactly 2 and, perhaps surprisingly, for certain graphs with
connectivity up to 5. In addition, we pose an intriguing conjecture that the PoC of any

7.1. INTRODUCTION 73

graph with connectivity at least 2 is closely related to its “linkedness”—the two-agent case
would be completely solved if the conjecture holds—and verify our conjecture when the
graph is a complete graph with an arbitrary matching removed. For any number of agents
(Section 7.3.2), we establish a general upper bound of m � n + 1 on the PoC (where m

and n denote the number of goods and agents, respectively), and show that this implies the
existence of a connected allocation that gives every agent at least a 1/(m� n+ 1) fraction
of her maximin share with respect to any graph. We also derive the exact PoC for paths
and stars. Notably, in order to establish the PoC for paths, we introduce a new relaxation of
proportionality that we call the indivisible proportional share (IPS) property. This notion
strengthens a number of relaxations of proportionality in the literature while maintaining
guaranteed existence, so we believe that it may be of independent interest as well.

Next, in Section 7.4 we turn our attention to envy-freeness relaxations and allow agents
to have arbitrary monotonic utilities. In the case of two agents, Bilò et al. [45] character-
ized the graphs for which an EF1 allocation always exists as the graphs that admit a “bipo-
lar ordering” (defined in Section 7.2). While the characterization yields a strong fairness
guarantee for this class of graphs, it does not give any guarantee for the remaining graphs.
We generalize this result by establishing the optimal relaxation of envy-freeness for every
graph—specifically, for each graph, we determine the smallest k for which an allocation that
is EFk always exists with two agents. Intuitively, the less connected the graph is, the weaker
the fairness guarantee we can make, i.e., the higher the price we have to pay. As a corollary,
an EF(m � 2) allocation exists for any connected graph, and the bound m � 2 is tight for
stars. By contrast, we show that EFX can only be guaranteed for complete graphs with two
agents. We then address the case of three agents, where we characterize the set of trees and
complete bipartite graphs that admit an EF1 allocation for arbitrary utilities.

From a technical point of view, our work makes extensive use of tools and concepts from
graph theory, including vertex connectivity, linkedness, ear decomposition, bipolar order-
ing, and block decomposition. While bipolar ordering and block decomposition have been
used by Bilò et al. [45] in the EF1 characterization, the other concepts have not previously
appeared in the fair division literature to the best of our knowledge. We believe that estab-
lishing these connections enriches the growing literature and lays the groundwork for fruitful
collaborations between researchers across the two well-established fields.

Finally, we remark that with the exception of Theorem 7.15, all of our guarantees are
constructive. In particular, we exhibit polynomial-time algorithms that produce allocations
satisfying the guarantees.

7.1.1 Related Work

The papers most closely related to this chapter are the two papers that we mentioned, by
Bouveret et al. [51] and Bilò et al. [45]. Bouveret et al. showed that for any number of
agents with additive utilities, there always exists an allocation that gives every agent her
maximin share when the graph is a tree, but not necessarily when the graph is a cycle. It is

74 CHAPTER 7. PRICE OF CONNECTIVITY

important to note that their maximin share notion corresponds to our G-MMS notion and
is defined based on the graph, with only connected allocations with respect to that graph
taken into account in an agent’s calculation. As an example of a consequence, even though
a cycle permits strictly more connected allocations than a path, it o�ers less guarantee in
terms of the G-MMS. Our approach of considering the (complete-graph) MMS allows us
to directly compare the guarantees that can be obtained for di�erent graphs. Bilò et al.
investigated the same model with respect to relaxations of envy-freeness. As we mentioned,
they characterized the set of graphs for which EF1 can be guaranteed in the case of two
agents with arbitrary monotonic utilities. Moreover, they showed that an EF1 allocation
always exists on a path for n 4. Intriguingly, the existence question for n � 5 remains
open, although they showed that an EF2 allocation can be guaranteed for any n.

Besides [45, 51], a number of other works have recently studied fairness under connec-
tivity constraints. Lonc and Truszczynski [114] investigated maximin share guarantee in the
case of cycles, also using the G-MMS notion, while Suksompong [150] focused on paths
and provided approximations of envy-freeness, proportionality, and equitability. Igarashi
and Peters [102] considered fairness in conjunction with the economic e�ciency notion
of Pareto optimality. Bouveret et al. [52] studied the problem of chore division, and gave
complexity results on deciding the existence of envy-free, proportional, and equitable allo-
cations for paths and stars. Bei and Suksompong [30] proposed a similar model in which
the resource is divisible and forms the edges of a graph (as opposed to the vertices).

Considering connected allocations can also be useful in settings where we are not in-
terested in connectedness per se, or perhaps the goods do not even lie on any graph. A
technique that has received interest recently is to arrange the goods on a path and compute
a connected allocation with respect to the path. Variants of this technique have been used
to devise algorithms that find a fair allocation using few queries [129] or divide goods fairly
among groups of agents [110, 143].

A related line of work also combines graphs with resource allocation, but uses graphs to
capture the connection between agents instead of goods. In particular, a graph specifies the
acquaintance relationship among agents. Abebe et al. [1] and Bei et al. [33] defined graph-
based versions of envy-freeness and proportionality with divisible resources where agents
only evaluate their shares relative to other agents with whom they are acquainted. Beynier
et al. [41] and Bredereck et al. [63] studied the graph-based version of envy-freeness with
indivisible goods. Aziz et al. [20] introduced a number of fairness notions parameterized
by the acquaintance graph.

7.2 Preliminaries

Consider an indivisible goods instance hN,M,Ui, including the set of n agents N , the set of
m indivisible goods M , and the agents’ utility functions U = {u1, u2, . . . , un}, as described
in Section 2.2. There is a bijection between the goods inM and them vertices of a connected

7.2. PRELIMINARIES 75

undirected graph G; we will refer to goods and vertices interchangeably. A bundle is called
connected if the goods in it form a connected subgraph of G, and an allocation or a partition
is connected if all of its bundles are connected. We assume in this chapter that allocations
are required to be connected. As is in the most of the literature when studying maximin
share guarantee [51, 96, 108, 114], we assume that utilities are additive. In this chapter, an
instance consists of the agents, the goods and their underlying graph, and the agents’ utilities
for the goods.

We are ready to define maximin share guarantee considered in this chapter.

Definition 7.1 (G-MMS). Given a graph G, an additive utility function u, and the number
of agents n, the graph maximin share (G-MMS) for G, u, n is defined as

G-MMS(G, u, n) := max
(M1,M2,...,Mn)

min
i=1,2,...,n

u(Mi),

where the maximum is taken over all partitions (M1,M2, . . . ,Mn) that are connected with
respect to G. The maximin share (MMS) defined in Definition 2.5 for u, n is thus

MMS(u, n) = G-MMS(Km, u, n),

where Km denotes the complete graph over the goods. When the parameters are clear from
the context, we will refer to the graph maximin share and the maximin share simply as G-
MMS and MMS, respectively. A partition for which the maximum is attained is called a
G-MMS partition (resp., MMS partition).

It follows from the definition that

G-MMS(G, u, n) MMS(u, n) u(M)

n

for allG, u, n, and G-MMS(G1, u, n) G-MMS(G2, u, n) ifG1 is a subgraph ofG2. More-
over, G-MMS(G, u, n) = MMS(u, n) = 0 if m < n.

Next, we define the price of connectivity.

Definition 7.2. Given a graph G and the number of agents n, the price of connectivity (PoC)
of G for n agents is defined as

sup
u

MMS(u, n)
G-MMS(G, u, n)

,

where the supremum is taken over all possible additive utility functions u.1 We denote the
PoC of a graph G for n agents by PoC(G, n).

By definition of the PoC, we have

PoC(G, n) · G-MMS(G, u, n) � MMS(u, n) (7.1)
1We interpret 0

0 in this context to be equal to 1. Note that MMS(u, n) = 0 if and only if
G-MMS(G, u, n) = 0, because both conditions are equivalent to the condition that fewer than n goods yield
a positive utility according to u.

76 CHAPTER 7. PRICE OF CONNECTIVITY

for any G, u, n, and the factor PoC(G, n) cannot be replaced by any smaller factor. When
G and n are clear from the context, we will refer to PoC(G, n) simply as PoC. Note that the
PoC is always at least 1, and is exactly 1 for complete graphs of any size. Moreover, the PoC
is 1 if m n.

Suppose that for some graph G and number of agents n, there always exists a connected
allocation that gives each agent at least � times her G-MMS. By Equation (7.1), this alloca-
tion also gives each agent at least �/PoC(G, n) times her MMS. Prior work has established
that � = 1 when n = 2 and G is arbitrary [114, Corollary 2], as well as when G is a tree
and n is arbitrary [51, Theorem 5.4]. Hence, in these cases, we can guarantee each agent
at least 1/PoC(G, n) times her MMS. The factor 1/PoC(G, n) is also the best possible. To
see this, consider n agents with the same utility function u. From the definition of G-MMS,
any connected allocation gives some agent a value of at most G-MMS(G, u, n). By con-
sidering u such that G-MMS(G, u, n) is arbitrarily close to MMS(u, n)/PoC(G, n), this
agent receives arbitrarily close to 1/PoC(G, n) times her MMS. To summarize, we have the
following proposition.

Proposition 7.3. Let n be any positive integer and G be any graph. If n = 2 (and G

is arbitrary), or if G is a tree (and n is arbitrary), then there always exists a connected
allocation that gives each agent at least 1/PoC(G, n) times her MMS. Moreover, the factor
1/PoC(G, n) is tight in both cases.

Proposition 7.3 implies that if there are two agents or G is a tree, in order to determine
the optimal MMS approximation for agents with possibly di�erent utilities, it su�ces to
determine the value PoC(G, n), which only concerns a single utility function.

We also consider relaxations of envy-freeness: EFk and EFX (see Definition 2.3).
All graphs considered in this chapter are assumed to be connected. The vertex connectiv-

ity (or simply connectivity) of a graph G is the minimum number of vertices whose deletion
disconnects G. A graph with vertex connectivity at least k is said to be k-connected. By
definition, every connected graph is 1-connected. A 2-connected graph is also called bicon-
nected. A bipolar ordering (also called bipolar numbering) of a graph is an ordering of its
vertices such that every prefix and every su�x of the ordering forms a connected graph.

7.3 Maximin Share Guarantee

In this section, we consider maximin share guarantee. Our goal is to derive bounds on the
PoC for arbitrary graphs in the case of two agents, and for paths and stars in the general case.
By Proposition 7.3, this also yields the optimal MMS approximation for each of these cases.

7.3.1 Two Agents

We first focus on the case of two agents and start by establishing the PoC for all graphs with
connectivity 1.

7.3. MAXIMIN SHARE GUARANTEE 77

Theorem 7.4. Let G be a graph with connectivity exactly 1, and let k � 2 be the maximum
number of connected components that can result from deleting a single vertex of G. Then
PoC(G, 2) = k.

Proof. First, we show that the PoC of G is at least k. Let v be a vertex of G whose dele-
tion results in k components. Consider a utility function with value k for v, value 1 for an
arbitrary vertex in each of the k components, and value 0 for all other vertices. The MMS
is k. In any connected bipartition, the part that does not contain v is a subset of one of the
k components, so this part has value at most 1. Hence the PoC is at least k.

Next, we show that the PoC of G is at most k. Take an arbitrary utility function u, and
assume without loss of generality that u(M) = 1. Since MMS(u, 2) u(M)/2 = 1/2, the
desired claim follows if there is a connected bipartition such that both parts have value at
least 1/(2k). Assume that no such bipartition exists.

Pick a spanning tree T of G, and let v be an arbitrary vertex. The removal of v results in
a number of subtrees of T ; clearly, at most one of these subtrees can have value more than
1/2. If such a subtree exists, we move from v towards the adjacent vertex in that subtree and
repeat the procedure with the new centre vertex. Note that we will never traverse back an
edge—otherwise there are two disjoint subtrees with value more than 1/2 each, contradicting
u(M) = 1. Since the tree is finite, we eventually reach a vertex v such that all subtrees
T1, T2, . . . , Tr resulting from the removal of v have value at most 1/2 each.

Since Ti and T \ Ti are both connected for every i, by our earlier assumption, each of
the subtrees T1, T2, . . . , Tr has value less than 1/(2k). Recall that in the original graph G,
removing v can result in at most k components. This means that if r > k, the r subtrees
must be connected by some edges not belonging to T . If subtrees Ti and Tj are connected by
such an edge, we can merge Ti and Tj into one component. Note that Ti [Tj has value less
than 1/(2k) + 1/(2k) = 1/k 1/2, so since Ti [Tj and T \ (Ti [Tj) are both connected,
Ti [Tj must again have value less than 1/(2k). Our procedure can be repeated until the
components can no longer be merged, at which point we are left with at most k components.
Each of these components has value less than 1/(2k), which implies that v has value more
than 1�k/(2k) = 1/2. In this case, a bipartition with v as one part is an MMS partition, so
MMS(u, 2) = 1 � u(v). On the other hand, at least one of the (at most) k components has
value at least (1� u(v))/k, which is 1/k of the MMS. We can take a connected bipartition
with such a component as one part and obtain the desired result.

We remark that the proof of Theorem 7.4 also yields a polynomial-time algorithm for
computing a bipartition such that both parts have value at least 1/k of the MMS. To compute
an allocation between two agents such that both agents receive 1/k of their MMS, we simply
let the first agent compute a desirable bipartition, and let the second agent choose the part
that she prefers. Since MMS(u, 2) u(M)/2, the second agent is always satisfied.

Before we move on to results about graphs with higher connectivity, we show the fol-
lowing lemma, which will help simplify our subsequent proofs. The lemma implies that in

78 CHAPTER 7. PRICE OF CONNECTIVITY

order to prove an upper bound on the PoC in the case of two agents, it su�ces to establish the
bound for utility functions such that in an MMS partition, the two parts are of equal value.

Lemma 7.5. For n = 2 and any graph G, the PoC remains the same if instead of taking the
supremum in Definition 7.2

sup
u

MMS(u, 2)
G-MMS(G, u, 2)

over all utility functions u, we only take the supremum over all utility functions u such that
in any MMS partition according to u, the two parts are of equal value.

Proof. Let u be an arbitrary utility function, and suppose that in an MMS partition, the two
parts are of value x y. We have MMS(u, 2) = x. Let ↵ := MMS(u,2)

G-MMS(G,u,2) . In any connected
bipartition, each part either has value at most x/↵, or at least (x+y)�x/↵ = y+(1�1/↵)x.

Consider a modified utility function u0 where in the MMS partition above, we arbitrarily
decrease the values of some goods in the part with value y so that the part has value x. It is
clear that MMS(u0, 2) = x. With respect to u0, in any connected bipartition, each part either
has value at most x/↵, or at least y + (1 � 1/↵)x � (y � x) = (2 � 1/↵)x. This means
that G-MMS(G, u0, 2) x/↵ = MMS(u0, 2)/↵, or MMS(u0,2)

G-MMS(G,u0,2) � ↵. Since the two parts
in any MMS partition according to u0 are of equal value, the proof is complete.

Next, we consider biconnected graphs, i.e., graphs with connectivity at least 2. We
show that the PoC is at most 4/3 for all such graphs—this is in contrast to graphs with
connectivity 1, which have PoC at least 2 according to Theorem 7.4. For this result, we will
use a property of biconnected graphs which we state in the following proposition. An open
ear decomposition of a graph consists of a cycle as the first ear and a sequence of paths as
subsequent ears such that in each path, the first and last vertices (which must be di�erent)
belong to previous ears while the remaining vertices do not.

Proposition 7.6 (Whitney [157, 158]). In a biconnected graph with at least three vertices,
any two vertices belong to a common cycle, and there exists an open ear decomposition.
Moreover, we may choose any cycle in the graph as the first ear.2

Theorem 7.7. Let G be a biconnected graph. Then PoC(G, 2) 4/3.

Proof. The case m 2 is trivial since n = 2 and the PoC is 1 in this case, so consider
m � 3. Take an arbitrary utility function u, and assume without loss of generality that
u(M) = 1. By Lemma 7.5, we may also assume that MMS(u, 2) = 1/2. Call a good heavy
if it has value strictly more than 1/4. Since there can be at most one heavy good in each part
of an MMS partition, there are at most two heavy goods in total. Pick goods g1 and g2 so
that together they include all of the heavy goods. By Proposition 7.6, there is a cycle in G

containing g1 and g2, and an open ear decomposition with this cycle as the first ear.
2There is also a linear-time algorithm for computing an open ear decomposition with an arbitrary cycle as

the first ear [142].

7.3. MAXIMIN SHARE GUARANTEE 79

We will construct a bipolar ordering of the vertices that begins with g1 and ends with g2.
Assume that the first ear is a cycle with vertex order

g1, h1, . . . , hi, g2, hi+1, . . . , hj.

We arrange these vertices as

g1, h1, h2, . . . , hi, hj, hj�1, . . . , hi+1, g2.

For each subsequent ear, suppose that the two vertices belonging to previous ears are h and
h0, where h appears before h0 in the current ordering. We insert the remaining vertices on
the path from h to h0 into the ordering directly after h, following the same order as in the
path. One can check (for example, by induction on the number of ears) that the resulting
ordering is a bipolar ordering beginning with g1 and ending with g2.

Consider first the case where max{u(g1), u(g2)} > 1/2; assume without loss of gen-
erality that u(g1) > 1/2. In this case, MMS(u, 2) = 1 � u(g1) < 1/2, contradicting the
assumption that MMS(u, 2) = 1/2.

Assume now that max{u(g1), u(g2)} 1/2, and recall that u(g) 1/4 for all g /2
{g1, g2}. Since MMS(u, 2) = 1/2, it su�ces to find a connected bipartition such that both
parts have value at least 3/8. Let S = {g1}, so u(S) 1/2. We add one good at a time
to S following the bipolar ordering until u(S) � 1/2. Since u(g2) 1/2, we stop (not
necessarily directly) before we add g2. Moreover, since each good besides g1 and g2 has
value at most 1/4, at some point during this process we must have 3/8 u(S) 5/8.
In the bipartition with S as one part, both parts are connected and have value at least 3/8,
completing the proof.

Unlike for Theorem 7.4, the proof of Theorem 7.7 does not directly lead to a polynomial-
time algorithm for computing an allocation such that both agents receive at least 3/4 of their
MMS. The problematic step is when we apply Lemma 7.5, since computing the maximin
share is NP-hard by a straightforward reduction from the partition problem. Woeginger [159]
showed that a polynomial-time approximation scheme (PTAS) for the problem exists—using
this PTAS, we can obtain a (3/4� ✏)-approximation algorithm that runs in polynomial time
for any constant ✏ > 0. Nevertheless, we next show that by building upon the proof of
Theorem 7.7, we can also achieve a polynomial-time 3/4-approximation algorithm.

Proposition 7.8. For biconnected graph and n = 2, there exists a polynomial-time algo-
rithm for computing an allocation that gives both agents at least 3/4 of their MMS.

Proof. As in the remark following Theorem 7.4, it su�ces to compute a bipartition such
that the first agent has value at least 3/4 of her MMS for both parts; the second agent can
then choose the part that she prefers. To compute such a bipartition, we iterate over all pairs
of goods g1, g2. For each pair, we construct a bipolar ordering that begins with g1 and ends
with g2; this is possible as explained in the proof of Theorem 7.7. We then consider taking
every possible prefix of the ordering as one part of the bipartition, and return the bipartition

80 CHAPTER 7. PRICE OF CONNECTIVITY

Algorithm 8: Approximate MMS Algorithm for Biconnected Graphs
Input: Indivisible goods M , undirected graph G, and utility function u.

1 current-best 0
2 M1 ;
3 M2 M
4 for (g1, g2) 2M ⇥M with g1 6= g2 do
5 Construct a bipolar ordering � of G starting with g1 and ending with g2.
6 for g 2M do
7 M 0

1 {all goods before g in �}
8 M 0

2 {g and all goods after g in �}
9 if min{u(M 0

1), u(M
0
2)} > current-best then

10 current-best min{u(M 0
1), u(M

0
2)}

11 M1 M 0
1

12 M2 M 0
2

13 return (M1,M2)

with the highest minimum between the two parts across all pairs g1, g2. The pseudocode of
the algorithm is given as Algorithm 8.

Since constructing a bipolar ordering with a specific cycle as the first ear can be done in
linear time [142], Algorithm 8 runs in polynomial time. We now establish the correctness
of the algorithm. Assume without loss of generality that MMS(u, 2) = 1/2, so there exists
a bipartition (M1,M2) of M such that u(M1) = 1/2 u(M2).3 Consider a modified utility
function u0 where we start with u and arbitrarily decrease the values of some goods in M2 so
that u0(M2) = 1/2. In the new instance, the proof of Theorem 7.7 implies that there exists
a connected bipartition for which both parts have value at least 3/8, and this bipartition
corresponds to one of the bipartitions examined by Algorithm 8. Since the values in the
original instance with utility function u can only be higher than in the new instance with
utility function u0, in the original instance both parts of this bipartition also have value at
least 3/8. It follows that both parts of the bipartition returned by Algorithm 8 have value at
least 3/8, which is 3/4 of the MMS.

In the light of Theorems 7.4 and 7.7, it is tempting to believe that for graphs with con-
nectivity 3 or higher, the PoC is strictly less than 4/3. Perhaps surprisingly, this is not the
case: a counterexample is the wheel graph shown in Figure 7.1, which has connectivity 3.
In the instance shown in the figure, the MMS is 4 while the G-MMS is 3, so the PoC of the
graph is at least 4/3 (and by Theorem 7.7, exactly 4/3). The key point of this example is
that the graph cannot be partitioned into two connected subgraphs in such a way that one
subgraph contains the vertices with value 1 and 3, while the other subgraph contains the two
vertices with value 2. This observation allows us to generalize the counterexample. A graph
is said to be 2-linked if for any two disjoint pairs of vertices (a, b) and (c, d), there exist two
vertex-disjoint paths, one from a to b and the other from c to d.

3Note that we are not assuming u(M) = 1 as in the proof of Theorem 7.7.

7.3. MAXIMIN SHARE GUARANTEE 81

3

1

0

0

20

20

0

Figure 7.1: An instance showing that the PoC of a wheel graph is at least 4/3.

Proposition 7.9. Let G be a graph that is not 2-linked. Then PoC(G, 2) � 4/3.

Proof. Suppose that G is not 2-linked, and let (a, b) and (c, d) be disjoint pairs of vertices
such that there do not exist two disjoint paths, one from a to b and the other from c to d.
Consider a utility function u such that u(a) = u(b) = 2, u(c) = 3, u(d) = 1, and u(g) = 0

for every other vertex g. We have MMS(u, 2) = 4. On the other hand, the graph cannot be
partitioned into two connected subgraphs in such a way that one subgraph contains a and b

while the other subgraph contains c and d—indeed, such a partition would give rise to two
disjoint paths that cannot exist by our assumption. This means that G-MMS(G, u, 2) 3.
Hence PoC(G, 2) � 4/3.

Every graph with connectivity at most 2 is not 2-linked.4 And Figure 7.1 shows an
example of a 3-connected graph that also does not satisfy the property. In fact, Mészáros
[124, Figure 1] constructed a 5-connected graph that still fails to be 2-linked!5 Combining
these facts with Theorem 7.7 yields the following corollaries.

Corollary 7.10. For every graph G with connectivity 2, PoC(G, 2) = 4/3.

Corollary 7.11. For some graph G with connectivity 5, PoC(G, 2) = 4/3.

While we have not been able to precisely determine the PoC for all graphs with connec-
tivity 3 or above, we present a conjecture that, if settled in the a�rmative, would complete
the picture for the two-agent case. Before we can describe the conjecture, we need the fol-
lowing generalization of 2-linkedness [124].

Definition 7.12. Given positive integers a, b, a graph G is said to be (a, b)-linked if for any
disjoint set of vertices M1,M2 with |M1| = a and |M2| = b, there exist disjoint connected
subgraphs G1, G2 of G such that Mi is contained in Gi for i = 1, 2.

4Indeed, given such a graph, let a, b be two vertices whose removal disconnects the graph, and let c, d
be vertices from distinct components in the resulting graph. Then any path between c and d must go through
either a or b.

5On the other hand, a 6-connected graph is always 2-linked [103].

82 CHAPTER 7. PRICE OF CONNECTIVITY

For example, (2, 1)-linkedness is equivalent to biconnectivity,6 while (2, 2)-linked graphs
correspond to what we have so far called 2-linked graphs. The new definition allows us to
extend the lower bound from Proposition 7.9.

Proposition 7.13. Let k be a positive integer, and let G be a graph that is not (2, k)-linked.
Then PoC(G, 2) � 2k/(2k � 1).

Proof. Suppose that G is not (2, k)-linked, and let {a1, a2} and {b1, b2, . . . , bk} be sets of
vertices for which there do not exist disjoint connected subgraphs separating them. Consider
a utility function u such that u(a1) = u(a2) = k, u(b1) = k + 1, u(b2) = u(b3) =

· · · = u(bk) = 1, and u(g) = 0 for every other vertex g. We have MMS(u, 2) = 2k.
On the other hand, the graph cannot be partitioned into two connected subgraphs in such
a way that one subgraph contains a1, a2 while the other subgraph contains b1, b2, . . . , bk.
Since all vertex values are integers, this implies that G-MMS(G, u, 2) 2k � 1. Hence
PoC(G, 2) � 2k/(2k � 1).

Our conjecture is that for biconnected graphs, the PoC is exactly captured by (2, k)-
linkedness.

Conjecture 7.14. Let k � 2 be an integer, and let G be a graph that is (2, k� 1)-linked but
not (2, k)-linked. Then PoC(G, 2) = 2k/(2k � 1).

The case k = 2 of Conjecture 7.14 holds by Corollary 7.10. We demonstrate next that
the conjecture also holds for ‘almost-complete’ graphs, i.e., for complete graphs with a non-
empty matching removed. These graphs have minimum degree m � 2, where m is the
number of vertices (i.e., goods). We show that the PoC of these graphs is always exactly
(2m� 4)/(2m� 5), with the only exception being the graph L5 that results from removing
two disjoint edges from the complete graph K5 (Figure 7.2). The graph L5 is not 2-linked,
so Proposition 7.9 (or alternatively, the utilities in Figure 7.2) implies that its PoC is at least
4/3 instead of 6/5. In fact, since the graph has connectivity 3, Theorem 7.7 tells us that its
PoC is exactly 4/3.

Theorem 7.15. Let G be a graph that results from removing a non-empty matching from a
complete graph with at least three vertices, and assume that G is di�erent from L5. Then
PoC(G, 2) = (2m� 4)/(2m� 5).

To prove Theorem 7.15, we will use the following lemma.
6To see this, first consider a graphG that is not biconnected—suppose that removing a vertex x disconnects

G. If y and z are vertices in di�erent components of the resulting disconnected graph, then takingM1 = {y, z}
and M2 = {x} yields a violation of Definition 7.12, meaning that G is not (2, 1)-linked. Conversely, suppose
that G is biconnected, and consider any disjoint set of vertices M1 = {y, z} and M2 = {x}. By definition
of biconnectivity, the graph G remains connected upon the removal of x. Hence, we may take G2 to be the
subgraph induced only on x and G1 to be the subgraph induced on all vertices except x in Definition 7.12.
This implies that G is (2, 1)-linked.

7.3. MAXIMIN SHARE GUARANTEE 83

0

21

23

Figure 7.2: Graph L5 and utilities showing that its PoC is at least 4/3.

Lemma 7.16. Let k be a positive integer, 2 s 2k be a real number, and x1, x2, . . . , xk �
1 be real numbers with sum s. For any real number 0 r s � 2, there exists a subset
J ✓ {1, 2, . . . , k} such that r

P
j2J xj r + 2.

Proof. We proceed by induction on k. For the base case k = 1 we must have s = 2, x1 = 2,
r = 0, and the result holds trivially. Suppose now that the result holds for k � 1; we will
prove it for k. Assume without loss of generality that x1 = max{x1, x2, . . . , xk}.

First, assume that x1 2. Define yi := x1 + x2 + · · · + xi for each i. The sequence
0, y1, y2, . . . , yk = s is strictly increasing and any two consecutive terms di�er by at most 2,
so one of the terms x1 + x2 + · · · + xi must be between r and r + 2. Hence we may take
J = {1, 2, . . . , i} to fulfil the claim.

Assume from now on that x1 > 2. We first prove the statement for r � s/2 � 1. If
x1 > s/2 + 1, then since xi � 1 for all i, we have

s = x1 + x2 + · · ·+ xk > (s/2 + 1) + (k � 1) = s/2 + k,

or s > 2k, a contradiction. So x1 s/2 + 1 r + 2. If x1 � r, we are done by choosing
J = {1}, so assume that x1 < r.

Let t := x2 + x3 + · · · + xk. Note that 0 t s � 2 2(k � 1) and 0 < r � x1
s� 2� x1 = t� 2. Applying the induction hypothesis on x2, x3, . . . , xk, we find that there
is a set L ✓ {2, 3, . . . , k} such that r � x1

P
l2L xl r � x1 + 2. Take J = L [{1}.

We have r
P

j2J xj r + 2, as desired.
Finally, suppose that r < s/2� 1. We have

s� 2 � s� r � 2 > s� (s/2� 1)� 2 = s/2� 1,

so we know from the previous case (r � s/2�1) that there exists a subset J ✓ {1, 2, . . . , k}
for which s � r � 2

P
j2J xj s � r. Since

Pk
j=1 xj = s, it follows that r

P
j2{1,2,...,k}\J xj r + 2, completing the proof.

We are now ready to establish Theorem 7.15.

Proof of Theorem 7.15. First, we show that the PoC of G is at least (2m�4)/(2m�5). Let
(v1, v2) be a missing edge. Consider a utility function with value m�2 for each of v1 and v2,

84 CHAPTER 7. PRICE OF CONNECTIVITY

value m� 1 for another vertex v3, and value 1 for each of the remaining m� 3 vertices (so
the total value is 4m� 8). The MMS is 2m� 4, attained by the bipartition with {v1, v2} as
one part. Take an arbitrary connected bipartition. If v1 and v2 are in the same part, this part
must contain at least one other vertex, so the other part has value at most 2m � 5. On the
other hand, if v1 and v2 are in di�erent parts, the part that does not contain v3 has value at
most 2m� 5. In either case, there is a part with value no more than 2m� 5, so the G-MMS
is at most 2m� 5. It follows that the PoC is at least (2m� 4)/(2m� 5).

Next, we show that the PoC of G is at most (2m�4)/(2m�5). Take an arbitrary utility
function u, and assume without loss of generality that u(M) = 4m � 8. By Lemma 7.5,
we may also assume that MMS(u, 2) = (4m � 8)/2 = 2m � 4. It su�ces to show that
G-MMS(G, u, 2) � 2m� 5. Consider any MMS partition. If the partition is connected, we
have that the G-MMS is 2m�4. Suppose therefore that the partition is not connected. Since
G results from removing a non-empty matching from a complete graph, this means that (at
least) one of the parts corresponds to a missing edge. Let v1 and v2 be the two vertices in
that part (so u({v1, v2}) = 2m� 4), and v3, . . . , vm be the remaining vertices of G.

Assume first that there exists a vertex v /2 {v1, v2} such that u(v) 1. We have
2m � 4 u({v1, v2, v}) 2m � 3, and the vertices v1, v2, v form a connected subgraph.
Moreover, since the graph G is di�erent from L5, the remaining vertices also form a con-
nected subgraph; together these vertices have value at least (4m�8)� (2m�3) = 2m�5.
Hence, in the connected bipartition with {v1, v2, v} as one part, both parts have value at least
2m� 5. It follows that G-MMS(G, u, 2) � 2m� 5 in this case.

Assume now that every vertex v /2 {v1, v2} satisfies u(v) > 1. If u(v1) � 2m� 5, then
taking the connected bipartition with v1 alone as one part again yields G-MMS(G, u, 2) �
2m� 5; an analogous argument applies if we have u(v2) � 2m� 5. Suppose therefore that
max{u(v1), u(v2)} < 2m�5. Since u(v1)+u(v2) = 2m�4, we have 1 < u(v1) < 2m�5,
and so 0 < 2m�5�u(v1) < 2m�6. Applying Lemma 7.16 with k = m�2, s = 2m�4,
{x1, . . . , xk} = {u(v3), . . . , u(vm)}, and r = 2m � 5 � u(v1), we find that there exists
a subset of {u(v3), . . . , u(vm)} for which the sum of the elements belongs to the interval
[2m� 5� u(v1), 2m� 3� u(v1)]. Letting S be the set of corresponding goods along with
v1, we have 2m � 5 u(S) 2m � 3. Hence, in the connected bipartition with S as one
part, both parts have value at least 2m � 5. Therefore G-MMS(G, u, 2) � 2m � 5 in this
case as well, and the proof is complete.

One can check that any graph G satisfying the condition of Theorem 7.15 is (2,m� 3)-
linked but not (2,m � 2)-linked, so Theorem 7.15 confirms Conjecture 7.14 for this class
of graphs.

7.3.2 Any Number of Agents

We proceed to the general setting where the goods are divided among an arbitrary number
of agents. In this setting, it is no longer true that the PoC alone captures the MMS approxi-
mation that can be guaranteed to the agents—this is evident in the case of a complete graph,

7.3. MAXIMIN SHARE GUARANTEE 85

where the PoC is 1 by definition, but an allocation that gives all agents their full MMS does
not always exist [108]. At first glance, it may seem conceivable that certain graphs do not
admit any useful MMS approximation. However, we provide a non-trivial guarantee for ar-
bitrary graphs that depends only on the number of agents and goods and, in particular, not
on the utilities (Theorem 7.18). We begin by establishing a general upper bound on the PoC.

Theorem 7.17. For any graph G and number of agents n, we have

PoC(G, n) max{1,m� n+ 1}.

Proof. Ifm < n, the PoC is 1. Assume thatm � n, and consider an arbitrary utility function
u. Let (M1,M2, . . . ,Mn) be a (not necessarily connected) partition of M that maximizes
mini=1,...,n u(Mi). We assume without loss of generality that |Mi| � 1 for each i, which
also means that |Mi| m� n+ 1 for every i.

For each i, let gi be a good of highest value in Mi according to u, and let M 0
i = {gi}. As

long as
Sn

i=1 M
0
i 6= M , we add a good not already in

Sn
i=1 M

0
i to one of the bundles M 0

i so
that the bundle remains connected; this is always possible since G is connected. At the end
of this process, (M 0

1,M
0
2, . . . ,M

0
n) is a connected partition of M . By our choice of gi, we

have
u(M 0

i) �
1

m� n+ 1
· u(Mi)

for every i. It follows that

G-MMS(G, u, n) � min
i=1,...,n

u(M 0
i) �

1

m� n+ 1
· min
i=1,...,n

u(Mi) =
1

m� n+ 1
·MMS(u, n).

Hence PoC(G, n) m� n+ 1.

As we will see in Theorems 7.20 and 7.23, the bound m� n+ 1 is tight for su�ciently
short paths and all stars. We now give an approximate maximin share guarantee for arbitrary
graphs.

Theorem 7.18. For any graph G and any number of agents n, there exists a connected
allocation that gives each agent at least 1/(m� n+ 1) of her MMS.

Proof. Take an arbitrary spanning tree H of G. By Theorem 7.17, PoC(H,n) m�n+1.
By Proposition 7.3, there exists a connected allocation with respect to H that gives each
agent at least 1/(m � n + 1) times her MMS. Since any connected allocation with respect
to H is also connected with respect to G, the conclusion follows.

Next, we derive tight bounds on the PoC in the cases of paths and stars for any number
of agents. By Proposition 7.3, this also yields the optimal MMS approximation for each of
these cases. The following simple fact will be useful.

Lemma 7.19. Let m � n, and let M 0 ✓M be an arbitrary set of at least m�n+1 goods.
For an agent with utility function u, we have u(M 0) � MMS(u, n).

86 CHAPTER 7. PRICE OF CONNECTIVITY

Proof. Observe that in any partition of the vertices into n parts, at least one of the parts is
contained inM 0. In particular, this holds for an MMS partition. It follows that MMS(u, n)
u(M 0), as claimed.

We begin with stars.

Theorem 7.20. Let n � 2 and let G be a star. Then

PoC(G, n) =

8
<

:
m� n+ 1 if m � n;

1 if m < n.

Proof. If m < n the PoC is 1, so assume that m � n. We first show that the PoC is at least
m � n + 1. Consider a utility function u with value m � n + 1 for the centre vertex and
for n � 2 of the leaves, and value 1 for each of the remaining m � n + 1 leaves. We have
MMS(u, n) = m�n+1. In any connected partition into n parts, at least n�1 parts contain
a single leaf. This means that at least one of these parts contains a single leaf with value 1.
Hence the PoC is at least m� n+ 1.

Next, we show that the PoC is at most m�n+1. Take an arbitrary utility function u, let
v⇤ be the centre vertex, and let v1, v2, . . . , vn�1 be the leaves with the highest value where
u(v1) � · · · � u(vn�1). Consider a connected partition ⇧ with each of these n� 1 vertices
as a part, and the remaining m� n+ 1 vertices as the last part.

Let A := M \ {v⇤, v1, . . . , vn�2}. By Lemma 7.19, MMS(u, n) u(A). Since there
are m� n+ 1 vertices in A and vn�1 is a vertex with the highest value, we have

u(vn�1) �
1

m� n+ 1
· u(A) � 1

m� n+ 1
· MMS(u, n).

It follows that u(vi) � MMS(u, n)/(m � n + 1) for all i = 1, 2, . . . , n � 1, so the first
n � 1 parts of ⇧ have value at least MMS(u, n)/(m � n + 1) each. The last part of ⇧ is
B := M \ {v1, v2, . . . , vn�1}. By Lemma 7.19 again, we have MMS(u, n) u(B). This
means that all parts of ⇧ have value at least MMS(u, n)/(m� n+ 1), as desired.

Remark. We note that Theorem 7.17 already implies that the PoC is at most m � n + 1.
Nevertheless, the above proof gives rise to a polynomial-time algorithm for computing a
connected allocation for n agents on a star such that each agent receives at least 1

m�n+1 of
her maximin share: Let each of the first n�1 agents pick a favourite leaf from the remaining
leaves in turn, and let the last agent take the remaining m� n+ 1 vertices.

To address the more involved case of paths, we introduce an approximation of propor-
tionality that can be of interest even in the absence of connectivity considerations. Recall
that an allocation is said to be proportional if it gives every agent at least her proportional
share, which is defined as u(M)/n. Even though a proportional allocation always exists
for divisible goods, as we explained in the introduction, this is not the case for indivisible
goods—our definition of indivisible proportional share therefore adapts proportionality to
the setting of indivisible goods. In order to ensure a non-trivial approximation, we will need

7.3. MAXIMIN SHARE GUARANTEE 87

to hypothetically remove up to n� 1 goods from the entire bundle. Indeed, when there are
n � 1 goods overall, in any allocation, one of the agents is necessarily left empty-handed.
If this agent is only allowed to hypothetically remove at most n� 2 goods, then she cannot
guarantee any positive (multiplicative) approximation of her utility for the entire bundle.
Thus, we are interested in the optimal approximation of each agent’s utility after n � 1

goods are removed. When the number of goods is large, this approximation is 1/n, which
is reasonable because there are n agents. However, for smaller number of goods, we will be
able to achieve a better approximation, which is captured by our IPS factor in the following
definition.

Definition 7.21 (IPS). For positive integers n,m, define

IPS(n,m) =

8
>>><

>>>:

1
n if m � 2n� 1;

1
m�n+1 if n m < 2n� 1;

0 if m < n.

Given n agents and m goods, a bundle A is said to satisfy the indivisible proportional share
(IPS) property for an agent with utility function u if there exists a (possibly empty) set
B ✓M \ A with |B| n� 1 such that

u(A) � IPS(n,m) · u(M \B).

An allocation is said to satisfy the IPS property if every agent receives a bundle that satisfies
the IPS property. For brevity, we will refer to a bundle or allocation that satisfies the IPS
property as being IPS.

We remark that IPS is a stronger property than PROP⇤(n�1) considered by Segal-Halevi
and Suksompong [143], which corresponds to taking IPS(n,m) = 1/n for m � n and 0 for
m < n. It is also stronger than PROP1 considered by Conitzer et al. [76] and Aziz et al. [21],
as well as a proportionality relaxation studied by Suksompong [150]. Despite its strength,
we show that an IPS allocation always exists. Moreover, we can obtain a connected IPS
allocation if the graph is a path.

Proposition 7.22. Let n � 2 and let G be a path. There exists a connected IPS allocation
of the m goods to the n agents.

Proof. If m < n, each agent needs utility 0 in an IPS allocation, so the claim holds trivially.
Assume that m � n. Starting with an empty bundle, we process the goods along the path
(say, from left to right) and add them one at a time to the current bundle until the bundle is
IPS to at least one of the agents. We then allocate the bundle to one such agent, and repeat
the procedure with the remaining goods and agents. Any leftover goods are allocated to the
agent who receives the last bundle.

We claim that this procedure always results in an IPS allocation. Notice from Defini-
tion 7.21 that if a bundle is IPS for an agent, then so is any superset of the bundle. Hence it

88 CHAPTER 7. PRICE OF CONNECTIVITY

su�ces to show that after n�1 bundles are allocated, the last agent still finds the remaining
bundle to be IPS. Assume without loss of generality that the bundles are allocated to agents
1, 2, . . . , n in this order, and let u be the utility function of agent n. The claim holds trivially
if the empty bundle is IPS for agent n, so assume that it is not. For 1 i n � 1, let the
bundle allocated to agent i be Mi = Xi [Yi, where Yi consists of the last good added to
Mi (if Mi is non-empty), and Xi consists of the remaining goods. Let X =

Sn�1
i=1 Xi and

Y =
Sn�1

i=1 Yi. In particular, |Y | n� 1.
Let Mn be the bundle allocated to agent n.

• Case 1: m � 2n � 1. By definition of the procedure, agent n does not find any of
the bundles X1, . . . , Xn�1 to be IPS. In particular, noting that Y ✓ M \Xi for each
1 i n � 1 and taking B = Y in Definition 7.21, we have u(Xi) < IPS(n,m) ·
u(M \ Y) = u(M \ Y)/n for all i. Hence,

u(Mn) = u(M)�
n�1X

i=1

u(Xi)�
n�1X

i=1

u(Yi)

> u(M)� n� 1

n
· u(M \ Y)� u(Y) =

1

n
· u(M \ Y).

Since Y ✓M \Mn, bundle Mn is IPS for agent n.

• Case 2: n m 2n� 1. First, we show that at most m� n of the first n� 1 agents
can receive at least two goods. Assume for contradiction that at least m � n + 1 of
these agents receive at least two goods, and suppose that the first m�n+1 of them are
agents a1, . . . , am�n+1 in this order. Let j be the first good in agent am�n+1’s bundle.
We claim that the bundle consisting of good j alone is IPS for agent n; this is su�cient
for the desired contradiction because agent n should have taken this bundle ahead of
agent am�n+1.

Before agent am�n+1 receives her bundle, the goods in X allocated to earlier agents
are precisely those in the set X 0 := [m�n

i=1 Xai . Let Z = M \ (X 0 [{j}). Since
|X 0| � m � n, we have |Z| m � (m � n) � 1 = n � 1. By definition of the
procedure, agent n does not find any of the bundles Xa1 , . . . , Xam�n to be IPS. In
particular, noting that Z ✓ M \ Xai and taking B = Z in Definition 7.21, we have
u(Xai) < u(M \ Z)/(m� n+ 1) for all 1 i m� n. Hence,

u({j}) = u(M)� u(X 0)� u(Z)

= u(M \ Z)�
m�nX

i=1

u (Xai)

> u(M \ Z)� m� n

m� n+ 1
· u(M \ Z)

=
1

m� n+ 1
· u(M \ Z).

Since Z ✓ M \ {j}, bundle {j} is IPS for agent n, so agent n should indeed have
taken this bundle ahead of agent am�n+1. This contradiction means that at most m�n
of the first n� 1 agents can receive at least two goods.

7.3. MAXIMIN SHARE GUARANTEE 89

We now proceed in a similar way as in Case 1. By definition of the procedure, agent
n does not find any of the bundles X1, . . . , Xn�1 to be IPS. In particular, noting that
Y ✓ M \Xi for each 1 i n � 1 and taking B = Y in Definition 7.21, we have
u(Xi) < IPS(n,m) · u(M \ Y) = u(M \ Y)/(m� n+ 1) for all i. Hence,

u(Mn) = u(M)�
n�1X

i=1

u(Xi)�
n�1X

i=1

u(Yi)

> u(M)� m� n

m� n+ 1
· u(M \ Y)� u(Y) =

1

m� n+ 1
· u(M \ Y),

where the inequality holds because at most m�n of the sets Xi are non-empty. Since
Y ✓M \Mn, bundle Mn is IPS for agent n.

The two cases together complete the proof.

Proposition 7.22 allows us to establish the PoC for paths, which we do next in Theo-
rem 7.23. Conversely, the instances that we use to show the upper bound on the PoC in
Theorem 7.23 also show that the factor IPS(n,m) in the existence guarantee of Proposi-
tion 7.22 cannot be improved.

Theorem 7.23. Let n � 2 and let G be a path. Then

PoC(G, n) =

8
>>><

>>>:

n if m � 2n� 1;

m� n+ 1 if n m < 2n� 1;

1 if m < n.

Proof. If m < n the PoC is 1, so assume that m � n. We will show that PoC(G, n) =

1/IPS(n,m).
First, we show that PoC(G, n) 1/IPS(n,m). Take an arbitrary utility function u.

Applying Proposition 7.22 to n agents who have the same utility function u, we find that
there exists a connected IPS allocation. This means each agent i receives a bundle Mi for
which there exists a set Bi ✓ M \ Mi with |Bi| n � 1 such that u(Mi) � IPS(n,m) ·
u(M \Bi). Since |M \Bi| � m�n+1, Lemma 7.19 implies that u(M \Bi) � MMS(u, n).
Consequently, we have

u(Mi) � IPS(n,m) · u(M \Bi) � IPS(n,m) · MMS(u, n)

for all agents i. Hence (M1, . . . ,Mn) is a connected partition with each part having value at
least IPS(n,m) · MMS(u, n). It follows that PoC(G, n) 1/IPS(n,m).

Next, we show that PoC(G, n) � 1/IPS(n,m). We consider two cases.

• Case 1: m � 2n� 1. Consider a utility function u with value 1, n, 1, . . . , n, 1 for the
first 2n � 1 vertices on the path (so exactly n vertices have value 1), and value 0 for
the remaining vertices. We have MMS(u, n) = n. On the other hand, one can check
that in any connected partition into n parts, at least one of the parts has value at most
1. Hence the PoC is at least n = 1/IPS(n,m).

90 CHAPTER 7. PRICE OF CONNECTIVITY

• Case 2: n m < 2n � 1. Consider a utility function u with value 1,m � n +

1, 1, . . . ,m � n + 1, 1 for the first 2m � 2n + 1 vertices on the path (so m � n + 1

vertices have value 1 while m�n vertices have value m�n+1), and value m�n+1

for the remaining 2n� 1�m vertices. In total, n� 1 vertices have value m� n+ 1,
and m � n + 1 vertices have value 1. We have MMS(u, n) = m � n + 1. On the
other hand, one can check that in any connected partition into n parts, at least one of
the parts has value at most 1. Hence the PoC is at least m� n+ 1 = 1/IPS(n,m).

In both cases we have PoC(G, n) � 1/IPS(n,m), completing the proof.

Note that in order to compute a connected allocation for n agents on a path such that
every agent receives at least a 1/PoC(G, n) = IPS(n,m) fraction of their MMS, we can use
the algorithm in Proposition 7.22, which runs in polynomial time, to compute a connected
IPS allocation. The first part in the proof of Theorem 7.23 implies that this allocation fulfils
the desired guarantee.

7.4 Envy-Freeness Relaxations

Having extensively studied maximin share guarantees in the presence of connectivity re-
quirements in the previous section, we now turn our attention to relaxations of envy-freeness.
We again determine the price that we have to pay in order to maintain connectivity—intuitively,
the less connected the graph is, the higher this price becomes. Unless specified otherwise,
we allow agents to have arbitrary monotonic utilities in this section.

We say that a graph G guarantees EFk for n agents if for all permitted utilities of the n

agents, there exists a connected EFk allocation.

7.4.1 Two Agents

For two agents, Bilò et al. [45] characterized the set of graphs that always admits an EF1
allocation regardless of the agents’ utilities. Their characterization is based on the observa-
tion that such graphs necessarily admit a vertex ordering to which a discrete variant of the
cut-and-choose protocol can be applied—in other words, the ordering is bipolar. The family
of graphs that admit a bipolar ordering can be characterized using the block decomposition
of a graph. A block is a maximal biconnected subgraph of a graph, and a cut vertex is a ver-
tex whose removal increases the number of connected components in the graph. The block
decomposition of a graph G is a bipartite graph B(G) with all blocks of G on one side and
all cut vertices of G on the other side; there is an edge between a block and a cut vertex in
B(G) if and only if the cut vertex belongs to the block in G.7

Proposition 7.24 (Bondy and Murty [48, Proposition 5.3]). For any connected graph G,
each pair of blocks share no edge and at most one cut vertex, and the block decomposition
B(G) is a tree.

7We refer to the paper of Bilò et al. for examples of graphs and their block decompositions.

7.4. ENVY-FREENESS RELAXATIONS 91

Bilò et al. [45] showed that a connected graph G guarantees EF1 for two agents if and
only if a bipolar ordering exists in G, i.e., the blocks of G can be arranged into a path.

Proposition 7.25 (Bilò et al. [45, Theorem 10]). The following four conditions are equiva-
lent for every connected graph G:8

1. The block decomposition B(G) is a path;

2. G admits a bipolar ordering;

3. G guarantees EF1 for two agents with arbitrary monotonic utilities;

4. G guarantees EF1 for two agents with identical binary utilities.

Bilò et al.’s characterization allows us to identify graphs for which an EF1 allocation
always exists in the case of two agents. However, for the remaining graphs, it does not
provide any fairness guarantee. Our next result generalizes their characterization by giving
the best possible EFk guarantee that can be made for each specific graph. In particular, we
will show that a graph G guarantees EFk for two agents if and only if G admits a bipolar
ordering over a subset of the vertices where each vertex in the ordering has at most k � 1

vertices ‘hanging’ from it.
To formalize this idea, it will be useful to define the following notions. For each path P

of B(G), we denote by C(P) the set of cut vertices that belong to some block in P . Given
a path P in the block graph B(G) of a graph G, for any vertex v of G that is not contained
in any block in P , we define its guardian to be the cut vertex v0 closest to v in B(G) that
belongs to some block in P (see Figure 7.3 for an example); we say that v is a dependent
of v0. For a given graph, we define a merge on a subset V of vertices forming a connected
subgraph to be an operation where we replace the vertices in V by a single vertex v, and there
is an edge between v and another vertex w in the new graph exactly when w is adjacent to
at least one vertex of V in the original graph. A path in a tree is said to be maximal if each
of its end vertices is a leaf of the tree.

Theorem 7.26. For any connected graph G and positive integer k, the following four con-
ditions are equivalent:

(1) There exists a path P in the block decomposition B(G) such that each cut vertex that
belongs to some block in P has at most k � 1 dependents;

(2) The vertices of G can be partitioned into disjoint subsets V1, V2, . . . , Vr such that each
Vj forms a connected subgraph of size at most k in G, and if we merge the vertices in
every set Vj separately, the resulting graph admits a bipolar ordering;

(3) G guarantees EFk for two agents with arbitrary monotonic utilities;
8Bilò et al. [45] used a slightly stronger definition of EF1 that they called “envy-freeness up to one outer

good”. In their definition, one is only allowed to remove a good if doing so leaves the remaining bundle
connected. It can be verified that their result also holds for the standard definition of EF1.

92 CHAPTER 7. PRICE OF CONNECTIVITY

v1

v2 v3

v4 v5

v6 v7
P

Figure 7.3: An example of a block decomposition B(G) in the proof of Theorem 7.26. Blue
vertices correspond to blocks in G and red vertices correspond to cut vertices in G. Here,
C(P) = {v1, v3, v6, v7}. In this example, v1 is the guardian of all vertices in block v2 except
itself, v3 is the guardian of all vertices in blocks v4 and v5 except itself, while v6 and v7 are
not guardians of any vertices.

(4) G guarantees EFk for two agents with identical binary utilities.

Proof. Consider the block decomposition B(G), which is a tree due to Proposition 7.24.
To show (1) =) (2), suppose that there exists a path P in the block decomposition

B(G) such that each cut vertex in C(P) has at most k � 1 dependents. Take each set Vj

in the theorem statement to consist of a vertex in C(P) along with all of its dependents.
Clearly, at most k vertices belong to each Vj . Also, each Vj is connected since the vertices
in Vj form a connected subgraph of the block decomposition. Let G0 be the graph resulting
from the merge operations on each Vj separately. The block decomposition of G0 is a path,
and hence G0 admits a bipolar ordering by Proposition 7.25.

To show (2) =) (3), suppose that the vertices of G can be partitioned into disjoint
subsets V1, V2, . . . , Vr as defined in the statement of the theorem. We will show that G
guarantees EFk for two agents. Consider arbitrary monotonic utilities of the two agents
ui for i = 1, 2. Let G0 be the graph resulting from the merge operations on each Vj for
j = 1, 2, . . . , r. We define the utility functions u0

i on G0 for i = 1, 2, where the value of an
agent for each bundle M 0 is equal to her value for all vertices of G that are merged into the
vertices of M 0. Specifically, for each i = 1, 2 and each bundle M 0 in G0,

u0
i(M

0) = ui

0

@
[

Vj2M 0

Vj

1

A .

Note that each u0
i remains monotonic and, by our assumption, G0 admits a bipolar ordering.

Thus, by Proposition 7.25, G0 admits a connected EF1 allocation (M 0
1,M

0
2) with the utilities

u0
i, so an agent’s envy can be eliminated by removing a vertex of G0 from the other agent’s

bundle. Consider the corresponding allocation (M1,M2) of G, where Mi =
S

Vj2M 0
i
Vj for

i = 1, 2. Since each vertex of G0 is a merge of at most k vertices, any envy that results
from this allocation can be eliminated by removing at most k vertices, and so the allocation
(M1,M2) is a connected EFk allocation of G.

The implication (3) =) (4) is immediate. To show (4) =) (1), suppose that for
every path P of B(G), there exists some cut vertex in C(P) with at least k dependents. We
will show that there exist identical binary utility functions for which the graph G does not
admit an EFk allocation.

7.4. ENVY-FREENESS RELAXATIONS 93

P
Lv

T

Rv

v

P 0

Lv

T

Rv

v

Figure 7.4: An example of a switch operation on the tree B(G) in Case 1 of the proof
of Theorem 7.26. The top and bottom figures are the trees before and after the operation,
respectively.

Let k⇤ � 1 be the smallest number for which there exists a maximal path P in B(G)

such that each cut vertex in C(P) is the guardian of at most k⇤ � 1 vertices in G. Choose
a maximal path P in B(G) where each cut vertex in C(P) has at most k⇤ � 1 dependents;
if several such paths exist, choose one that minimizes the number of vertices in C(P) with
exactly k⇤ � 1 dependents. By definition of k⇤, we have k⇤ � 1 � k. Hence it su�ces to
show the existence of identical binary utility functions for which the graph G does not admit
an EF(k⇤ � 1) allocation.

Let v 2 C(P) be a cut vertex with k⇤ � 1 dependents. It could be that v is on the path
P itself (e.g., vertices v1, v6, and v7 in Figure 7.3), or v is not on the path P but belongs to
some block in P (e.g., vertex v3 in Figure 7.3). We consider the two cases separately.

Case 1: v is in the path P itself. Let Lv and Rv be the subtree of the tree B(G) rooted at
v starting with each of the two blocks adjacent to v on the path P , respectively. For each
subtree besides Lv and Rv of the tree B(G) rooted at v, with a block adjacent to v in B(G)

as the root of the subtree, define its size to be the number of dependents of v in G belonging
to at least one block in the subtree. Note that the size can be di�erent from the number of
vertices in the subtree in B(G).

Suppose that T is a largest subtree among such subtrees and has size r k⇤ � 1. We
claim that at least r vertices of G (excluding v) belong to some block in Lv. Assume for
contradiction that there are at most r � 1 such vertices. In B(G), we switch Lv with T and

94 CHAPTER 7. PRICE OF CONNECTIVITY

P
LB

P 0

RB

v

Bv0
P 00

P 0

LB

RB

v B

v0

Figure 7.5: An example of a switch operation on the tree B(G) in Case 2 of the proof
of Theorem 7.26. The left and right figures are the trees before and after the operation,
respectively.

choose an arbitrary path of T that contains a leaf of B(G) to be on the main path P (see
Figure 7.4). Let P 0 denote the new maximal path. Since v loses at least r dependents and
gains at most r � 1 new dependents, v now has at most k⇤ � 2 dependents with respect to
P 0. Moreover, since T has size at most k⇤ � 1, each of the new cut vertices in C(P 0) has at
most k⇤ � 2 dependents. Hence we have decreased the number of cut vertices with k⇤ � 1

dependents by at least 1. This gives the desired contradiction. The same argument shows
that at least r vertices of G (excluding v) belong to some block in Rv.

Consider two agents who have the same binary utility function with value 1 for v, its
k⇤ � 1 dependents, r arbitrary vertices of G (besides v) belonging to some block in Lv,
and r arbitrary vertices of G (besides v) belonging to some block in Rv, and value 0 for the
remaining vertices. The total value of an agent is 2r+ k⇤. In any connected allocation, one
of the agents does not receive v. This agent receives value at most r, while the remaining
goods are worth at least r + k⇤. It follows that the allocation cannot be EF(k⇤ � 1).

Case 2: v is not in the path P but belongs to some block B in P . Let LB and RB be the
subtree of the tree B(G) rooted at B starting with each of the two cut vertices adjacent to
B on the path P , respectively. We claim that at least k⇤ vertices of G belong to some block
in LB. Assume for contradiction that there are at most k⇤ � 1 such vertices. Let v0 be the
cut vertex in LB adjacent to B. In B(G), we switch LB with v and its dependents, and
choose an arbitrary path P 0 that starts with v and contains at least one of its dependents as
well as a leaf of B(G) to be on the main path P (see Figure 7.5). Let P 00 denote the new
maximal path. Since LB contains at most k⇤ � 1 vertices (which include v0), v0 now has at
most k⇤ � 2 dependents with respect to P 00. Moreover, the subtree that replaced LB has at
most k⇤ vertices. Among these vertices, v and at least one other vertex belong to P 0, which
is now on the new path P 00, so any new cut vertex has at most k⇤� 2 dependents. Hence we
have decreased the number of cut vertices with k⇤ � 1 dependents by at least 1. This gives
the desired contradiction. The same argument shows that at least k⇤ vertices of G belong to
some block in RB.

Consider two agents who have the same binary utility function with value 1 for v, its
k⇤�1 dependents, k⇤ arbitrary vertices ofG belonging to some block inLB, and k⇤ arbitrary
vertices of G belonging to some block in RB, and value 0 for the remaining vertices. The

7.4. ENVY-FREENESS RELAXATIONS 95

total value of an agent is 3k⇤. In any connected allocation, one of the agents receives a bundle
whose vertices of value 1 are contained in LB, RB, or the set with v and its dependents. This
agent receives value at most k⇤, while the remaining goods are worth at least 2k⇤. It follows
that the allocation cannot be EF(k⇤ � 1).

Hence, in both cases there exist identical binary utility functions for which the graph does
not admit an EF(k⇤ � 1) allocation, as claimed.

Theorem 7.26 allows us to determine in polynomial time the optimal k such that a given
graph always admits an EFk allocation, as well as to compute such an allocation. To do
so, we compute the block decomposition B(G) of the graph—this can be done in linear
time [100]. We then determine the value of k⇤ in the proof of the theorem, which we have
shown to be equal to the optimal value of k; this can be done by testing all pairs of vertices
as endpoints of the path P . Finally, we compute a bipolar ordering of the vertices belonging
to P—again, this takes linear time [84]—and apply the EF1 algorithm of Bilò et al. [45] on
the merged vertices.

Theorem 7.26 also yields a short proof that every graph admits an EF(m�2) allocation.
Moreover, we show that the bound m� 2 is tight for stars.

Proposition 7.27. Let n = 2, and let G be any graph with at least three vertices. There
exists a connected EF(m� 2) allocation to the two agents.

Proof. Since the graph contains at least three vertices, it has a path of length 2; let the three
vertices on this path be v1, v2, v3 and V1 = {v1}, V2 = {v2}, V3 = {v3}. Add the remaining
vertices to these sets arbitrarily so that each set remains connected. Clearly, each set contains
at most m� 2 vertices. Theorem 7.26 then implies that an EF(m� 2) allocation exists.

Proposition 7.28. Let n = 2, and letG be a star with at least two edges. There exist identical
binary utility functions of the two agents such that a connected EF(m� 3) allocation does
not exist.

Proof. Consider two agents who have value 1 for every good. In any connected allocation,
one of the agents receives at most one good, while the other agent receives at least m � 1

goods. Hence the allocation cannot be EF(m� 3).

Next, we consider a stronger fairness notion, EFX. It is known that for two agents with
arbitrary monotonic utilities, an EFX allocation always exists [132]. We show that if we
consider connected allocations, the statement remains true only if the graph is complete.

Theorem 7.29. Let n = 2, and letG be a non-complete graph. There exist identical additive
utility functions of the two agents such that no connected allocation is EFX.

Proof. Pick an arbitrary missing edge of G, and let ✏ > 0 be a su�ciently small constant.
Suppose that the two agents have value 2 for each of the two vertices with a missing edge (call
them v1 and v2), and value 3, ✏, ✏, . . . , ✏ for the remaining vertices (call the first vertex v3).

96 CHAPTER 7. PRICE OF CONNECTIVITY

2
v

2
v4

2
v3

3
v1

4
v2

0

Figure 7.6: Example of an instance in the proof of Theorem 7.30.

Assume for contradiction that there exists a connected EFX allocation. In this allocation,
neither of the agents can receive v3 together with one (or both) of v1, v2. So one of the agents
must receive v1 and v2, while the other agent receives v3. If the first agent also receives one of
the remaining vertices, the allocation cannot be EFX. So the second agent receives all of the
remaining vertices. However, the resulting allocation is not connected, a contradiction.

7.4.2 Three Agents

We now address the case of three agents. Bilò et al. [45] showed that in this case, an EF1
allocation is guaranteed to exist if the graph contains a Hamiltonian path9 or if it is a star
with three edges. We extend this result by characterizing all trees and complete bipartite
graphs that always admit an EF1 allocation. Recall that we allow agents to have arbitrary
monotonic utilities in this section.

Theorem 7.30. Let G be a tree. Then G guarantees EF1 for three agents if and only if G is
either a path, or a star with three edges.

Proof. The ‘if’ direction was already shown by Bilò et al. [45]; we establish the ‘only if’
direction. Assume that G is neither a path, nor a star with three edges. Suppose first that
there is a vertex v with degree at least 4. Consider three agents who have identical utilities
with value 1 on v and four of its neighbours, and 0 on all other vertices. In any connected
allocation, an agent who does not get v receives value at most 1, while the bundle of the
agent who gets v has value at least 3 to her. Hence the allocation is not EF1.

Suppose now that every vertex has degree at most 3. Since G is not a path, there is a
vertex v with degree 3. Moreover, since G is not a star, one of the branches from v contains
at least two vertices, say a branch starting with a neighbour v1 of v followed by another
vertex v2. Let v3, v4 be the two other vertices adjacent to v. Consider three agents who have
identical utilities with value 2 for v, v3, v4, value 3 for v1, value 4 for v2, and value 0 for
all other vertices (see Figure 7.6). Consider any connected allocation; in what follows, we
will only be concerned with goods of non-zero value. First, assume that one of the agents
receives either only v3 or only v4, and obtains value at most 2. If another agent receives at
least three goods, the allocation is clearly not EF1. So each of the other two agents receives

9Clearly, it su�ces to prove the claim when the graph is a path.

7.4. ENVY-FREENESS RELAXATIONS 97

exactly two goods, which means one of them receives v1 and v2. This bundle is worth 3 to
the first agent even after removing the most valuable good, so the allocation cannot be EF1.
Hence one of the agents receives v3, v4, and v. But then the agent who does not receive v2

will envy this agent even after removing one good.

Next, we consider complete bipartite graphs. Denote by Ka,b the complete bipartite
graph with a vertices on the left (call this set of vertices L) and b vertices on the right (call
this set of vertices R). We start by showing that if a, b � 3, there always exists a connected
EF1 allocation. In fact, we present a generalization that holds for any number of agents.

Proposition 7.31. Let n � 2, and let G be a complete bipartite graph Ka,b with a, b � n.
Then G guarantees EF1 for n agents.

Proof. We enhance the envy cycle elimination algorithm of Lipton et al. [113], which com-
putes an EF1 allocation for any number of agents. The algorithm works by allocating one
good at a time in arbitrary order—we will exploit this freedom in choosing the order. It also
maintains an envy graph, which has the agents as its vertices, and a directed edge i ! j if
agent i envies agent j with respect to the current (partial) allocation. At each step, the next
good is allocated to an agent with no incoming edge, and any cycle that arises as a result
is eliminated by giving j’s bundle to i for each edge i ! j in the cycle. This allows the
algorithm to maintain the invariant that the envy graph is cycle-free, and so there exists an
agent with no incoming edge before each allocation of a good.

We apply the envy cycle elimination algorithm by choosing a careful order of the goods
to allocate. Since a � n and every agent is unenvied at the beginning, we can first pick n

goods from L and allocate one of them to each agent. After this point, we may no longer
have control over which agent to choose next. Take an agent with no incoming edge in the
envy graph. If the agent has already received a good from R, allocate to her a good from
L if one still remains, otherwise allocate a good from R. Else, the agent has not received
a good from R. In this case, allocate to her a good from R if one still remains, otherwise
allocate a good from L. The pseudocode is presented as Algorithm 9.

The resulting allocation is EF1 [113]; we now show that it is connected. Every agent
receives a good from L in the first phase of the algorithm. Note that if an agent receives at
least one good from both L and R, her bundle is guaranteed to be connected. So it su�ces
to show that an agent will never receive more than one good from L without receiving a
good from R. By construction, an agent who already has a good from R will take goods
from L unless L is already empty. Since b � n, this means that as long as some agent has
not received a good from R and the algorithm has not terminated, there is at least one good
from R left. This establishes the desired claim.

Note that since the envy cycle elimination algorithm runs in time polynomial in the
number of agents and goods [113], the proof of Proposition 7.31 also yields a polynomial-
time algorithm that computes a connected EF1 allocation for any number of agents.

98 CHAPTER 7. PRICE OF CONNECTIVITY

Algorithm 9: Enhanced Envy Cycle Elimination Algorithm
Input: Agents N , complete bipartite graph with vertices L and R on the left and

right respectively, and utility functions u1, u2, . . . , un.
1 M1,M2, . . . ,Mn ;
2 r1, r2, . . . , rn false // Indicate whether agent i has received a good

from R
3 for i 2 N do Move an arbitrary good from L to Mi.
4 while L [R 6= ; do
5 Eliminate cycles in the envy graph.
6 i any agent with no incoming edge in the envy graph
7 if ri = true then
8 if L 6= ; then
9 Move an arbitrary good from L to Mi.

10 else
11 Move an arbitrary good from R to Mi.

12 else
13 if R 6= ; then
14 Move an arbitrary good from R to Mi.
15 ri true
16 else
17 Move an arbitrary good from L to Mi.

18 return (M1,M2, . . . ,Mn)

If the agents have additive utilities, we can also obtain an EF1 allocation via a simple
polynomial-time algorithm—the “double round-robin algorithm”. The algorithm proceeds
by running the classical round-robin algorithm twice, once on L and once on R, with oppo-
site orderings of the agents. The pseudocode is shown as Algorithm 10.

Since a, b � n, every agent receives at least one good from each of L and R, so the
resulting allocation is connected. We claim that it is EF1. To see this, consider two agents
i, i0 with i < i0. When allocating each of the sets L and R, we consider a round to begin
when i picks a good, and end just before the next time i picks a good (or when the set runs
out of goods). During the allocation of L, in each round i picks before i0. Since the utilities
are additive, i does not envy i0 with respect to the goods in L. Similarly, i does not envy
i0 in each round during the allocation of R. The only possible source of envy is before the
first round starts, when i0 picks her first good. However, this means that the envy can be
eliminated if we remove this good from the bundle of i0. Hence i does not envy i0 up to
one good in total; an analogous argument shows that i0 also does not envy i up to one good.
Since i and i0 are arbitrary, the allocation is EF1.

With Proposition 7.31 in hand, we now proceed with the characterization for complete
bipartite graphs.

Theorem 7.32. Let a, b be positive integers with a b. The graph Ka,b guarantees EF1 for
three agents if and only if one of the following holds:

7.4. ENVY-FREENESS RELAXATIONS 99

Algorithm 10: Double Round-Robin Algorithm
1 M1,M2, . . . ,Mn ;
2 i = 1
3 while L 6= ; do
4 j highest-valued good in L according to ui.
5 Move j from L to Mi.
6 i i+ 1
7 if i = n+ 1 then i = 1

8 i = n
9 while R 6= ; do

10 j highest-valued good in R according to ui

11 Move j from R to Mi.
12 i i� 1
13 if i = 0 then i = n

14 return (M1,M2, . . . ,Mn)

2 v1

2 v2

1v3

1v4

1v5

1v6

0

Figure 7.7: Example of an instance in the proof of Theorem 7.32.

1. a = 1 and b 3;

2. a = 2 and b 3;

3. a, b � 3.

Proof. The case a = 1 is covered by Theorem 7.30 and the case a � 3 by Proposition 7.31,
so assume that a = 2. If b 3, then G contains a Hamiltonian path, so the existence of
an EF1 allocation follows from the result of Bilò et al. [45]. Else, let b � 4. Consider
three agents who have identical utilities with value 2 on each of the two vertices v1, v2 2 L,
value 1 on four of the vertices v3, v4, v5, v6 2 R, and value 0 for the remaining vertices (see
Figure 7.7). Consider any connected allocation. If v1 and v2 are allocated to the same agent,
this agent must also receive at least one of the vertices from R, and the allocation is not
EF1. Else, one agent receives v1 and another agent receives v2. Now, the third agent can get
at most one vertex from R and therefore receives value at most 1. This means that one of
the first two agents receives one of v1 and v2 along with at least two of v3, v4, v5, v6. This
agent is envied by the third agent even after we remove a good. It follows that the allocation
cannot be EF1.

100 CHAPTER 7. PRICE OF CONNECTIVITY

7.5 Conclusion and Future Work

In this chapter, we have studied the fair allocation of indivisible goods under connectivity
constraints and provided an extensive set of results on the guarantees that can be achieved
via maximin share guarantee and relaxations of envy-freeness for various classes of graphs.
For maximin share guarantee, we establish a link between the graph-specific maximin share
and the well-studied maximin share through our price of connectivity (PoC) notion. We
present a number of bounds on the PoC, several of which are tight, and leave a tempting
conjecture that would settle the two-agent case if it holds. On the envy-freeness front, we
classify all connected graphs based on the strongest relaxation with guaranteed existence in
the case of two agents—thereby also quantifying the price that we have to pay with respect to
fairness for each graph—and characterize the set of trees and complete bipartite graphs that
always admit an EF1 allocation for three agents. Extending our results beyond three agents
is a challenging problem: even when the graph is a path, the only known proof of EF1 exis-
tence for four agents employs arguments based on Sperner’s lemma, and the corresponding
question remains open when there are at least five agents [45].

Our results on envy-freeness relaxations hold for agents with arbitrary monotonic utili-
ties. On the other hand, as is the case in most of the literature, our results on maximin share
guarantee rely on the assumption that the agents’ utility functions are additive. Maximin
share guarantee beyond additive utilities has been studied by Barman and Krishnamurthy
[27] and Ghodsi et al. [93]; for example, they showed that a constant approximation of the
maximin share can be achieved for any number of agents with submodular utilities when
the graph is complete. Since complementarity and substitutability are common in practice,
it would be interesting to see how the graph-based approximations that we obtain in this
chapter change as we enlarge the class of utility functions considered. Indeed, as Plaut and
Roughgarden [132] noted, there is a rich landscape of problems to explore in fair division
with di�erent classes of utility functions, and the graphical setting is likely to be no excep-
tion.

Finally, while our results in this work provide fairness guarantees that hold regardless
of the agents’ utilities, better guarantees can be obtained in many instances if we take the
utilities into account. For example, even though an envy-free allocation does not always
exist, it is known that such an allocation exists most of the time when utilities are drawn at
random [78, 117]. On a complete graph, deciding the existence of an envy-free allocation
is NP-hard even for two agents with identical utilities [113]. By contrast, this problem can
be solved e�ciently on a tree or a cycle for any constant number of agents, since we can
simply go through all of the (polynomially many) connected allocations; yet, the problem
again becomes NP-hard even on a path if the number of agents is non-constant [51]. Similar
computational questions can be asked for other combinations of graphs and fairness notions
without guaranteed existence, and we believe that these questions constitute an important
direction that deserves to be pursued in future work.

Part III

Other Settings

101

Chapter 8

Truthful Cake Sharing

8.1 Introduction

In previous chapters, we have studied various aspects of fair division, a fundament problem
in social choice theory. When the resource is heterogeneous and divisible, this problem is
commonly known as cake cutting, with the cake serving as a metaphor for the heterogeneous
resource. Cake cutting has been extensively studied for over half a century in mathematics
and economics, and more recently in computer science [55, 112, 134, 138].

In this chapter, we consider a variant of the classic cake cutting problem where instead
of competing with one another for the cake, the agents all share the same subset of the cake,
which must be chosen subject to a length constraint. We refer to this setting as cake shar-
ing. The cake sharing problem captures many real-world scenarios, such as when a group
of agents need to decide the time periods for which they should reserve a sports facility or a
conference room for collective use given their limited budget, or when a group of users seek
to agree upon the files to store in a shared cache memory. Our goal is to design cake sharing
mechanisms that are both truthful and fair. Truthfulness requires that it should be in every
agent’s best interest to report her true underlying preferences to the mechanism. A truthful
mechanism makes it easy for agents to participate in, as they do not have to act strategically
and reason about beneficial manipulations; it also simplifies the job of the mechanism de-
signer when reasoning about the possible behaviour of the agents. Note that truthfulness by
itself is easy to obtain, for example by ignoring the agents’ reports completely and allocating
a prespecified subset of the cake. However, this is a patently unfair mechanism because it
leaves any agent who has no value for that subset empty-handed. Is there a mechanism that
is truthful and at the same time satisfies a certain degree of fairness for all agents?

Two mechanisms that have been used in a variety of resource allocation settings and
often shown to exhibit attractive fairness properties are the maximum Nash welfare (MNW)
solution and the leximin solution. The MNW solution chooses an allocation that maximizes
the product of the agents’ utilities among all feasible allocations. It is known this solu-
tion satisfies envy-freeness with divisible resources, and envy-freeness up to one good with
indivisible resources [69]. The leximin solution considers all feasible allocations that maxi-

103

104 CHAPTER 8. TRUTHFUL CAKE SHARING

mize the minimum among the agents’ utilities; among all such allocations, it considers those
maximizing the second smallest utility, and so on. Leximin is also shown to satisfies pro-
portionality and envy-freeness for a wide range of settings [107]. Due to their optimization
nature, both solutions fulfil an important economic e�ciency criterion of Pareto optimality:
there is no other feasible outcome that makes some agent better o� and no agent worse o�
compared to the chosen outcome. Indeed, any such improved outcome would also be an im-
provement with respect to the corresponding optimization objective. Given the broad appeal
of the two mechanisms, are they appropriate choices for our cake sharing setting, especially
from the truthfulness perspective?

As is standard in the cake cutting literature, we model the cake as an interval [0, 1]; for
a given parameter ↵ 2 [0, 1], a subset of length at most ↵ of the cake can be collectively
allocated to the agents. We assume that the agents have piecewise uniform utilities, meaning
that each agent has a desired subset of the cake which she values uniformly. Except in
Section 8.6, we also assume that once a mechanism chooses a subset of the cake, it can
“block” each agent from accessing certain parts of the cake, usually those that the agent does
not desire according to her report. We remark here that blocking can be easily implemented
in the aforementioned applications by restricting access to the sports facility, conference
room, or files in a cache memory.

In Section 8.3, we focus on the leximin solution. Our main technical result establishes
the truthfulness of the solution for any number of agents with arbitrary piecewise uniform
utilities. At a high level, our proof proceeds by showing that the leximin solution is immune
to certain types of manipulations, and then arguing that this immunity is su�cient to protect
the solution against all possible manipulations. Along the way, we introduce the notion of
an "-change—a tiny change from one utility vector or allocation towards another—which
may be useful in related settings. We also show that each agent receives the same utility in
all leximin allocations, which means that tie-breaking is inconsequential, and that such an
allocation can be computed in polynomial time.

Since truthfulness by itself is trivial to achieve as we explained earlier, we consider in
Section 8.4 the fairness of mechanisms. We measure fairness using the egalitarian ratio,
which is defined as the worst-case egalitarian welfare over all instances, where we normalize
the agents’ utilities when computing their egalitarian welfare. We show that for any ↵ and
any number of agentsn, the leximin solution achieves an egalitarian ratio of exactly ↵

n�(n�1)↵ .
Moreover, we prove that this ratio is already optimal among all mechanisms that are truthful
and position oblivious (see Definition 8.17). Our results in Sections 8.3 and 8.4 establish
the leximin solution as an attractive mechanism in the setting of cake sharing.

Next, in Section 8.5, we turn our attention to the MNW solution. We show that the
solution is equivalent to the leximin solution in the case of two agents, and is therefore
truthful in that case. In general, however, a result of Aziz et al. [24, Theorem 3] implies the
non-truthfulness of the MNW solution in our setting. We strengthen their result by showing
that MNW is not truthful even when an agent is only allowed to report a subset of her true

8.1. INTRODUCTION 105

desired piece.1 Moreover, in contrast to Aziz et al.’s example, the symmetry structure in
our example allows us to provide a relatively short proof of the non-truthfulness that can be
easily verified by hand.

Then, we demonstrate in Section 8.6 that the ability to block is crucial for the truthful-
ness of mechanisms. In particular, we show that no truthful, Pareto optimal, and position
oblivious mechanism can achieve a positive egalitarian ratio when blocking is not allowed.

Finally in Section 8.7, we consider an extension of the cake sharing model where the
cost of selecting the cake is piecewise constant and show that a generalization of the leximin
solution is still truthful and achieves the optimal egalitarian ratio.

8.1.1 Related Work

While the model of cake sharing is new to the best of our knowledge, the selection of a
collective subset from a given set subject to a size or budget constraint has been studied in
several lines of work. In multiwinner voting (see the survey of Faliszewski et al. [85]), the
goal is to choose a certain number of candidates to form a committee, where criteria can
include excellence and diversity. In that setting, Peters [131] proved that no rule can simul-
taneously satisfy a form of fairness and a form of truthfulness when agents have approval
preferences (analogous to piecewise uniform utilities in our setting). A key di�erence be-
tween multiwinner voting and cake sharing is that the candidates in the former are discrete
and cannot be divided into arbitrarily small pieces. Variants where discrete items instead of
candidates are selected have also been considered [116, 145].

In the last few years, a long list of papers have addressed the problem of participa-
tory budgeting, where the citizens decide how a public budget should be spent on possible
projects in their community (see the survey of Aziz and Shah [17]). Some models assume
that projects are discrete (each project can either be fully completed or not at all), while
others assume that they are divisible (partial completion of a project yields some utility to
the citizens). In either case, there is a prespecified set of projects and the preference of an
agent within a project is uniform, so participatory budgeting cannot capture our cake sharing
model where there is no predetermined division of the cake into homogeneous units.

Aziz et al. [24] considered a probabilistic voting setting where agents have dichoto-
mous preferences over alternatives and the goal is to output a probability distribution over
the alternatives. Their model corresponds to a special case of our model where interval
[(j � 1)/m, j/m] represents alternative j for each j = 1, 2, . . . ,m, and ↵ = 1/m; in this
special case, agents are not allowed to have “breakpoints” that are not multiples of 1/m in
their utility functions (see the precise definition in Section 8.2). Like us, they showed that the
leximin solution is truthful.2 Our results on the leximin solution generalize and strengthen

1We remark that subset manipulation is a highly restricted form of manipulation. Indeed, Peters [131]
noted that reporting a subset is a “particularly simple fashion” of manipulating, and used subset manipulation
as the “o�cial notion” of truthfulness.

2They called the notion excludable strategyproofness, which is equivalent to truthfulness with blocking in
our setting.

106 CHAPTER 8. TRUTHFUL CAKE SHARING

theirs in two important ways. First, we allow agents to report arbitrary breakpoints—as
discussed in the previous paragraph, this considerably enlarges the strategy space of the
agents and introduces an aspect that cannot be captured by Aziz et al.’s or any other known
participatory budgeting models. Second, we establish a tight bound on the egalitarian ra-
tio and show that the leximin solution achieves this bound. Therefore, our results make a
significantly stronger case in favour of the leximin solution.

Friedman et al. [89] studied a model in which agents share a cache memory unit, focusing
on truthfulness and fairness like we do. In their model, each agent has a private file that no
other agent is interested in, and there is a large public file that may be of interest to multiple
agents. The challenge is to elicit the true ratio between each agent’s utility for the public file
and that for her private file. Similarly to participatory budgeting, the files are predetermined
and the agents’ preferences are uniform within each file, so their model does not encompass
cake sharing. These authors also demonstrated that the ability to block can help mechanisms
achieve better guarantees in their setting, in particular by preventing “free riding”.

Truthfulness in cake cutting has been considered in several papers [18, 32, 34, 61, 75,
106, 121, 123]. Like our chapter, a number of these papers also address the case of piecewise
uniform utilities. Two important fairness properties in cake cutting are envy-freeness and
proportionality. Note that envy-freeness is always fulfilled in our setting (as long as the
mechanism does not block any agent’s valued cake), since all agents share the same subset
of the cake. On the other hand, proportionality has a similar flavour as our egalitarian ratio
notion, where we want to guarantee a certain level of utility for every agent.

Finally, both the leximin and MNW solutions have been examined in a variety of settings
and often shown to exhibit desirable properties [24, 47, 59, 69, 98, 107, 132, 144].

8.2 Cake Sharing Model

Our setting includes a set of agents denoted by N = [n] and a heterogeneous divisible
good (or cake) represented by the normalized interval [0, 1]. A piece of cake is a union of
finitely many disjoint (closed) intervals. Denote by `(I) the length of an interval I , i.e.,
`([a, b]) = b � a. For a piece of cake S, we denote `(S) =

P
I2S `(I). Each agent i 2 N

is endowed with a density function fi : [0, 1] ! R�0, which captures how the agent values
di�erent parts of the cake. We assume that the agents have piecewise uniform utilities (see
Definition 2.2) with the density function fi taking on the value 1 for all desired parts and
0 for all undesired parts. Let Wi ✓ [0, 1] denote the piece of cake on which fi = 1. The
utility of agent i for any piece of cake S is given by ui(S) := `(S \Wi). We assume that
`(Wi) > 0 for every agent i, since we can simply ignore an agent i with `(Wi) = 0.

Let ↵ 2 [0, 1] be a given parameter. We refer to a setting with agents, their density
functions, and the parameter ↵ as an instance. A mechanism M(R) chooses from any given
instanceR a piece of cakeAwith `(A) ↵. This, however, does not mean that all agents will
have full access to A as we allow the mechanism to block each agent from accessing certain

8.2. CAKE SHARING MODEL 107

parts of the selected piece. That is, the mechanism can assign piece Ai ✓ A to agent i;
we call A = (A,A1, . . . , An) an allocation. The utility of agent i from the allocation A
is ui(Ai). Since the cases ↵ = 0 and ↵ = 1 are trivial, (the mechanism cannot allocate
any cake and can always allocate the whole cake, respectively), we assume from now on
that ↵ 2 (0, 1). Given an instance, every point that is a left or right endpoint of an interval
in Wi for at least one i is called a breakpoint; the points 0 and 1 are also considered to be
breakpoints. Observe that for any instance, the agents’ utilities for a piece of cake S depend
only on the amounts of cake between consecutive pairs of breakpoints included in S.

We now define the central property and the two main mechanisms of this chapter.

Definition 8.1 (Truthfulness). A mechanism is truthful if for any instance R with M(R) =

(A,A1, . . . , An) and any agent i 2 N , if the agent reports W 0
i 6= Wi and the mechanism re-

turns the allocation A0 = (A0, A0
1, . . . , A

0
n) on the modified instance, then ui(Ai) � ui(A0

i).

Definition 8.2 (MNW). Given an instance, the maximum Nash welfare (MNW) solution
chooses a piece of cake A with `(A) ↵ such that the product

Q
i2N ui(A) is maximized.

It then assigns Ai = A \Wi for all i 2 N .

Definition 8.3 (Leximin). Given an instance, the leximin solution considers pieces of cake
A with `(A) ↵ such that the minimum among the utilities u1(A), u2(A), . . . , un(A) is
maximized; among all such pieces A, it considers those for which the second smallest utility
is maximized, and so on, until after considering the largest utility, it chooses one of the pieces
A that remain. It then assigns Ai = A \Wi for all i 2 N .

The following example illustrates some of our definitions.

Example 8.4. Let ↵ = 1/2. Consider an instance with two agents whose utility functions
are W1 = [0, 1/2] and W2 = [1/4, 7/8].

Cake
0 1/8 1/4 1/2 5/8 7/8 1

W1

W2

Assume without loss of generality that the tie-breaking rule of both leximin and MNW
returns the allocationA = [1/8, 5/8].3 Then, agent 1 has access to the pieceA1 = A\W1 =

[1/8, 1/2] while agent 2 has access to the piece A2 = A \W2 = [1/4, 5/8]. Both agents
receive utility 3/8. 4

Since both of the mechanisms always choose Ai = A \ Wi for all i, we can repre-
sent an allocation A simply by the set A when we discuss these mechanisms. Note that

3We show in Theorem 8.20 that leximin and MNW are equivalent in the case of two agents.

108 CHAPTER 8. TRUTHFUL CAKE SHARING

ui(Ai) = `(Ai \Wi) = `(A \Wi) = ui(A), so it also su�ces to consider the agents’ utili-
ties with respect to A. By a standard compactness argument and our observation above that
the agents’ utilities depend only on the amounts of cake between breakpoints, both solutions
are well-defined (i.e., the desired maxima are attained). There may be several maximizing
allocations A to choose from, in which case we generally allow arbitrary tie-breaking—as
we will see later, this tie-breaking does not influence the utility that each agent receives
and therefore does not play a significant role. We call an allocation that is returned by the
MNW solution (resp., leximin solution) under some tie-breaking an MNW allocation (resp.,
leximin allocation). By our assumptions that ↵ > 0 and `(Wi) > 0 for every i, all MNW
allocations and leximin allocations give every agent a strictly positive utility.

8.3 Leximin Solution

In this section, we consider the leximin solution and start by establishing its basic properties.
Our first result is that the utility of each agent is the same in all leximin allocations, meaning
that tie-breaking is not an important issue. The proof proceeds by assuming for contradiction
that two leximin allocations give some agent di�erent utilities, and arguing that the “average”
of these two allocations would have been a better choice with respect to the leximin ordering.

Proposition 8.5. Given any instance, for each agent i, the utility that i receives is the same
in all leximin allocations.

Proof. Assume for contradiction that two leximin allocations, A and A0, give some agent
di�erent utilities. Let A00 be an allocation such that for each pair of consecutive break-
points, the amount of cake between those breakpoints included in A00 is the average of
the corresponding amounts for A and A0. By linearity, A00 is a feasible allocation, and
ui(A00) = 1

2(ui(A) + ui(A0)) for every i 2 N .
Since the leximin ordering is a total order, the multiset of utilities that then agents receive

inAmust be the same as the corresponding multiset inA0. Let j be an agent with the smallest
min{uj(A), uj(A0)} such that uj(A) 6= uj(A0), and assume w.l.o.g. that uj(A) < uj(A0).
All agents k with min{uk(A), uk(A0)} < min{uj(A), uj(A0)} have uk(A) = uk(A0), and
this latter quantity is also equal to uk(A00). On the other hand, we have uj(A00) = 1

2(uj(A)+

uj(A0)) > uj(A), which means that the number of agents who receive utility exactly uj(A)

in A00 is strictly less than the corresponding numbers for A and A0. Hence, A00 is a better
allocation with respect to the leximin ordering than A and A0, a contradiction.

Next, we show a leximin allocation can be computed e�ciently via a linear programming-
based approach similar to the one used by Airiau et al. [2] in the context of portioning. Recall
that in our setting, agents’ utility functions can be described explicitly by the sets Wi.

Proposition 8.6. There exists an algorithm that computes a leximin allocation in time poly-
nomial in the input size.

8.3. LEXIMIN SOLUTION 109

Algorithm 11: Computing a leximin allocation
Input: Agents N , a set M of cake intervals, and {Wi}i2[n].

1 N 0 ;
2 ti 0, 8i 2 N
3 while N 0 6= N do
4 Solve the following linear program:
5 maximize t⇤ subject to
6

Pm
j=1 1Ij✓Wi · xj � t⇤ 8i 2 N \N 0

7
Pm

j=1 1Ij✓Wi · xj = ti 8i 2 N 0

8
Pm

j=1 xj ↵

9 0 xj `(Ij) 8j 2 {1, . . . ,m}
10 Set t⇤ to be the solution of the linear program.
11 for i0 2 N \N 0 do
12 Solve the following linear program:
13 maximize " subject to
14

Pm
j=1 1Ij✓Wi0 · xj � t⇤ + "

15
Pm

j=1 1Ij✓Wi · xj � t⇤ 8i 2 N \N 0

16
Pm

j=1 1Ij✓Wi · xj = ti 8i 2 N 0

17
Pm

j=1 xj ↵

18 0 xj `(Ij) 8j 2 {1, . . . ,m}
19 if " = 0 then
20 N 0 N 0 [{i0}
21 ti0 t⇤

22 return the solution x of the last linear program solved

Proof. First, we divide the cake into a setM of intervals I1, I2, . . . , Im using all breakpoints,
so each interval is either desired in its entirety or not desired at all by each agent. Let xj

denote the length of Ij that we include in our allocation. Thus, the utility of agent i can be
written as

Pm
j=1 1Ij✓Wixj , where 1X denotes the indicator variable for event X .

We proceed by formulating linear programs. Initially, the set N 0 of agents whose utility
we have already fixed is empty. We determine the smallest utility in a leximin allocation
by solving for the maximum t⇤ such that the utility of every agent is at least t⇤. We then
determine an agent who receives utility t⇤ in a leximin allocation—to this end, for each
agent, we solve for the maximum " such that this agent receives utility at least t⇤ + " and
every other agent receives utility at least t⇤. We choose an agent who returns " = 0, fix the
utility of this agent i0 by setting ti0 = t⇤, and continue by finding the next smallest utility
among the remaining agents. The pseudocode of our algorithm is given as Algorithm 11.

Since our algorithm requires solving O(n2) linear programs, it runs in polynomial time.
We now establish its correctness. Consider the first iteration of the while loop, and the
returned value t⇤ of the first linear program. We claim that for at least one i0 2 N , the linear
program for i0 returns " = 0. Indeed, if this is not the case, then for every i0, there is a
feasible allocation that gives i0 a utility strictly greater than t⇤ and gives every other agent a
utility of at least t⇤; by taking the “average” of all such allocations similarly to the proof of

110 CHAPTER 8. TRUTHFUL CAKE SHARING

Proposition 8.5, we obtain a feasible allocation that gives every agent strictly greater than
t⇤, contradicting the definition of t⇤. For i0 such that " = 0, we therefore have that the utility
of i0 is equal to t⇤ in every leximin allocation. We then apply a similar argument for the
remaining n � 1 iterations to conclude that the utility of each agent in the allocation that
the algorithm returns is equal to the corresponding utility in every leximin allocation. It
therefore follows that the returned allocation is a leximin allocation.

We now come to our main result of this section, which establishes the truthfulness of the
leximin solution.

Theorem 8.7. For arbitrary tie-breaking, the leximin solution is truthful.

At a high level, the proof of Theorem 8.7 proceeds by identifying specific types of ma-
nipulations, arguing that such manipulations cannot be beneficial when the leximin solution
is used, and then showing that being immune to these manipulations implies being immune
to all manipulations. We start by defining an "-change, a useful concept in our proof.

Definition 8.8 ("-change). Given two vectors of real numbers x = (x1, x2, . . . , xn) and
x0 = (x0

1, x
0
2, . . . , x

0
n), an "-change from x towards x0 refers to the following continuous

operation: for each i 2 {1, 2, . . . , n}, xi changes linearly to x00
i := xi + "(x0

i � xi), where "

is su�ciently small so that if xi < xj , then x00
i < x00

j .

For ease of expression, we will also use an "-change to refer to the outcome of such an
operation, i.e., the vector x00. When we discuss "-changes, we will not specify the exact
value of ": any " satisfying the above condition works.

Lemma 8.9. Given two vectors x and y, if y is a better vector with respect to the leximin
ordering than x, then an "-change from x to y is also a leximin improvement.

Proof. Sort the numbers of x in non-descending order and group them into buckets so that
numbers within each bucket are the same and those in di�erent buckets are di�erent. Ob-
serve that an "-change improves x with respect to the leximin ordering if and only if for the
lowest bucket where there is a change, some number increases and no number decreases.

Consider an "-change from x towards a better leximin vector y. If some number in the
lowest bucket of x decreases, then y would not be a leximin improvement of x, so no number
in this bucket decreases. If some number in this bucket increases, we are done by the above
observation. Else, there is no change in this bucket, and we move on to the next bucket and
repeat the same argument. Because x and y are di�erent, there must be a change in at least
one bucket, which gives our desired conclusion.

We now extend the definition of an "-change to allocations. Recall that for the leximin
solution, it su�ces to consider the set A instead of the entire allocation A. Given two allo-
cations A and A0, an "-change from A towards A0 can be captured by dividing the cake into
intervals according to the breakpoints and changing A towards A0 so that the length of cake
included in the allocation in each interval changes linearly. Note that when we perform an

8.3. LEXIMIN SOLUTION 111

"-change from A towards A0, by linearity, we also obtain a corresponding "-change from the
vector (u1(A), u2(A), . . . , un(A)) towards (u1(A0), u2(A0), . . . , un(A0)), and any allocation
obtained during the process is feasible.

Next, we present auxiliary lemmas used for proving the truthfulness of leximin solution.
These lemmas discuss how the leximin allocation can change when an agent modifies her
density function in various ways. For notational convenience, in these lemmas we assume
that instance R (resp., R0) contains the density functions corresponding to W1,W2, . . . ,Wn

(resp., W 0
1,W

0
2, . . . ,W

0
n). Our first lemma says that whenever an agent shrinks her desired

piece in such a way that it contains the entire portion she receives, then she should still
receive the same portion in the new instance.

Lemma 8.10. Given a leximin allocation A for instance R, let R0 be an instance such that
A \Wi ✓ W 0

i ✓ Wi for an agent i 2 N and W 0
j = Wj for all j 2 N \ {i}. Then, A is also

a leximin allocation for R0.

Proof. Suppose for contradiction that A is not a leximin allocation for R0. Consider a lex-
imin allocation A0 for R0. Since W 0

i ✓ Wi, the utility of agent i for A0 in R0 is at most that
for A0 in R. Moreover, the utility of every agent j 6= i for A0 is the same in R0 as in R. On
the other hand, since A \Wi ✓ W 0

i , the utility of every agent for A is the same in R0 as in
R. By our assumption that A0 is a better allocation with respect to the leximin ordering than
A in R0, the same must also hold for R, a contradiction.

Our second lemma says that whenever an agent shrinks her desired piece, she should not
get a higher utility than before.

Lemma 8.11. Given a leximin allocation A for instance R, let R0 be an instance such that
W 0

i ✓ Wi for an agent i 2 N and W 0
j = Wj for all j 2 N \ {i}. Let A0 be a leximin

allocation for R0. Then, `(A0 \W 0
i) `(A \Wi).

Proof. Suppose for contradiction that `(A0\W 0
i) > `(A\Wi); let x0 and x denote the former

and latter quantities, respectively. By Proposition 8.5, agent i receives the same utility in all
leximin allocations, so A is a better allocation with respect to the leximin ordering than A0

in R. When changing from A0 to A, since W 0
i ✓ Wi, the utility of agent i decreases from at

least x0 to x with respect to R. Hence, even if the utility of agent i started at exactly x0 and
decreased to x, the change would still be a leximin improvement.

Now, consider the agents’ utilities with respect to R0. When changing from A0 to A,
since W 0

i ✓ Wi, the utility of agent i decreases from x0 to at most x. Since all changes are in
the same direction as the previous change starting from x0, which is a leximin improvement,
by Lemma 8.9, an "-change from A0 towards A is also a leximin improvement with respect
to R0. This contradicts the assumption that A0 is a leximin allocation for R0.

Our third lemma says that if an agent is already getting her entire desired piece, then
whenever she shrinks her desired piece, she should still be at maximum happiness.

112 CHAPTER 8. TRUTHFUL CAKE SHARING

Lemma 8.12. Given a leximin allocation A for instance R with Wi ✓ A for an agent i 2 N ,
let R0 be an instance such that W 0

i ✓ Wi and W 0
j = Wj for all j 2 N \ {i}. Let A0 be a

leximin allocation for R0. Then, W 0
i ✓ A0.

Proof. Suppose for contradiction that A0 does not contain the entire W 0
i , and let x0 = `(A0\

W 0
i) < `(W 0

i). By Proposition 8.5, agent i receives the same utility in all leximin allocations,
so A is a better allocation with respect to the leximin ordering than A0 in R. By Lemma 8.9,
an "-change from A0 towards A is also a leximin improvement with respect to R, so by the
characterization of "-change improvements in the proof of the lemma, in the lowest bucket
where there is a change, some number increases and no number decreases. In this "-change,
the utility of agent i increases from at least x0 towards `(Wi).

Now, consider the same "-change from A0 towards A, but with respect to R0. The utility
of agent i increases from exactly x0 towards `(W 0

i), while those of other agents change in the
same way as before. Since agent i’s utility starts no higher than before and still increases, one
can check that in the lowest bucket where there is a change, again some number increases and
no number decreases. Hence, the characterization of "-change improvements implies that
the change is also a leximin improvement with respect toR0. This contradicts the assumption
that A0 is a leximin allocation for R0.

We are now ready to prove Theorem 8.7.

Proof of Theorem 8.7. Suppose for contradiction that the leximin solution is not truthful.
This means that there exists an instance R with leximin allocation A such that if agent i
reportscWi instead of Wi, a leximin allocation bA in the new instance bR satisfies `(bA\cWi \
Wi) > `(A \Wi). We will keep the desired pieces Wj of agents j 2 N \ {i} unchanged
throughout this proof.

First, consider an instance bR0 where cW 0
i = cWi \ bA. By Lemma 8.10 applied to bR and

bR0, bA is also a leximin allocation for bR0. Next, consider an instance bR00 in which cW 00
i =

cWi \ bA\Wi. Since cW 0
i ✓ bA, by Lemma 8.12 applied to bR0 and bR00, any leximin allocation

for bR00 must contain the entire cW 00
i . Recall that `(cW 00

i) > `(A \Wi).
Finally, consider the instances R and bR00. From the former to the latter, agent i’s desired

piece shrinks from Wi to cW 00
i ✓ Wi. By Lemma 8.11, the agent should not get a higher

utility through this shrinking. However, the agent’s utility is `(A\Wi) before the shrinking,
and `(cW 00

i) afterwards. This is a contradiction.

Observe that unlike MNW, the leximin solution depends on the normalization of the
agents’ utilities. Besides our normalization, another common choice in cake cutting is to
normalize the utility of every agent for the whole cake to 1. We remark here that with this al-
ternative normalization, the leximin solution is not truthful. To see this, consider two agents
with W1 = [0, 1/3] and W2 = [1/3, 2/3], and let ↵ = 1/3. In this instance, the (alternative)
leximin solution gives each agent length 1/6 of the cake. However, if agent 2 misreports that
W2 = [1/3, 1], then it is possible that the agent receives the interval [1/3, 5/9] and therefore
length 2/9 > 1/6 of her valued cake. In the next section, we provide further evidence that

8.4. EGALITARIAN RATIO 113

our normalization is the appropriate one in cake sharing by showing that our version of the
leximin solution achieves a strong fairness guarantee in terms of egalitarian welfare.

8.4 Egalitarian Ratio

As we mentioned in the introduction, truthfulness by itself is easy to achieve, for example
by always allocating a fixed piece of cake of length ↵. However, this may leave certain
agents with zero utility, a patently unfair outcome. A common measure of fairness is the
egalitarian welfare, which corresponds to the minimum among the utilities of all agents.
In order to perform meaningful interpersonal comparisons of utilities, we normalize the
utilities in the following definition.

Definition 8.13 (Egalitarian ratio). Given an instance R and an allocation A, the egalitarian
ratio of A is defined as

Egal-ratio-allocR(A) = min
i2N

ui(Ai)

ui([0, 1])
.

For a mechanism M and parameters n and ↵, the egalitarian ratio of M with respect to n

and ↵ is defined as

Egal-ration,↵(M) = inf
R

Egal-ratio-allocR(M(R)),

where the infimum is taken over all instances with n agents and parameter ↵.

In other words, the egalitarian ratio of M with respect to n and ↵ is the smallest ratio
between an agent’s utility for her piece allocated by M and her utility for the entire cake,
taken over all instances with parameters n and ↵. For example, if a mechanism always allo-
cates a fixed piece of length ↵ regardless of the agents’ utility functions, then its egalitarian
ratio with respect to any n and ↵ 2 (0, 1) is 0. We first present a tight upper bound on the
egalitarian ratio.

Proposition 8.14. For all n � 1 and ↵ 2 (0, 1),

0 Egal-ration,↵(M) ↵

for any mechanism M. Moreover, for each inequality, there exists a mechanism M such
that the inequality is tight.

Proof. The lower bound of 0 holds trivially, and is achieved by the mechanism discussed
before the proposition.

For the upper bound, note that if some agent i values the whole cake (i.e., Wi = [0, 1]),
then ui([0, 1]) = 1 and ui(Ai) ↵, so no mechanism can achieve egalitarian ratio larger than
↵. The tightness follows from a mechanism that, given any instance, divides the cake into
intervals using all breakpoints and chooses an (arbitrary) ↵ fraction from each interval—this
results in ui(Ai) = ↵ · ui([0, 1]) for all i.

114 CHAPTER 8. TRUTHFUL CAKE SHARING

Our next result gives the precise egalitarian ratio of the leximin solution.

Theorem 8.15. For all n � 1 and ↵ 2 (0, 1),

Egal-ration,↵(leximin) =
↵

n� (n� 1)↵
.

Proof. For the upper bound, consider instanceRwithWi =
h
(i�1)↵

n , i↵n

i
for i = 1, . . . , n�1,

and Wn =
h
(n�1)↵

n , 1
i
. Any leximin allocation A gives a cake of length ↵

n to every agent, so

Egal-ratio-allocR(A)
un(A)

un([0, 1])
=

↵/n

1� (n� 1)↵/n
=

↵

n� (n� 1)↵
.

We now consider the lower bound. Since the mechanism can allocate length ↵ of the
cake and there are n agents, it can give every agent i a utility of at least min{↵/n, `(Wi)}.
Hence, all leximin allocations give each agent i at least this much utility. If an agent has
`(Wi) 1 � (n�1)↵

n , the utility ratio for this agent is at least ↵/n
1�(n�1)↵/n = ↵

n�(n�1)↵ . Else,
suppose that `(Wi) = 1 � (n�1)↵

n + x for some x > 0. In this case, no matter how the
mechanism allocates length ↵ of the cake, the utility of this agent is at least

↵�
✓
1�

✓
1� (n� 1)↵

n
+ x

◆◆
= ↵/n+ x.

Hence, the utility ratio of this agent is at least

↵/n+ x

1� (n� 1)↵/n+ x
� ↵

n� (n� 1)↵
,

where the inequality follows from the fact that the expression on the left-hand side is non-
decreasing for x 2 [0,1).

Theorem 8.15 shows that the leximin solution achieves a non-trivial egalitarian ratio.
However, it is unclear how good this ratio is. We will therefore show that the solution at-
tains the highest possible ratio among all truthful mechanisms satisfying a natural condition.
Given a vector of piecewise uniform density functions f = (f1, f2, . . . , fn), let Lf be a vec-
tor with 2n components such that each component represents a distinct subset of agents and
the value of the component is the length of the piece desired by exactly that subset of agents
(and not by any agent outside the subset).

Example 8.16. Consider the instance in Example 8.4. The correspondingLf of this instance
is (1/8, 1/4, 3/8, 1/4), where the components correspond to the lengths of the pieces desired
by exactly the set of agents ;, {1}, {2}, and {1, 2}, respectively. 4

Definition 8.17 (Position obliviousness). A mechanism M is position oblivious if the fol-
lowing holds: Let f and f 0 be any vectors of density functions such that Lf = Lf 0 , and let
R and R0 be instances represented by these respective vectors and a given ↵; if M(R) =

(A,A1, . . . , An) and M(R0) = (A0, A0
1, . . . , A

0
n), then ui(Ai) = u0

i(A
0
i) for every i 2 N .

8.4. EGALITARIAN RATIO 115

Position obliviousness has previously been studied by Bei et al. [34]. Intuitively, for
a position oblivious mechanism, the utility of an agent depends only on the lengths of the
pieces desired by various subsets of agents and not on the positions of these pieces. It follows
directly from the definition that the leximin solution is position oblivious.4

Theorem 8.18. Let M be a truthful and position oblivious mechanism. Then, for all n � 1

and ↵ 2 (0, 1),
Egal-ration,↵(M) ↵

n� (n� 1)↵
.

Proof. Assume for the sake of contradiction that there exists a truthful and position oblivious
mechanism M with Egal-ration,↵(M) = ↵

n�(n�1)↵ + � for some � > 0. For each i 2 N ,
let Ci be a piece of length `(Ci) = ↵/n + " such that Ci \ Cj = ; for every pair i, j 2 N ,
where " > 0 is such that

" < min

⇢
1� ↵

n
,

�(n� (n� 1)↵)2

n(n� 1)(↵ + �(n� (n� 1)↵))

�
.

Consider an instance R where Wi = Ci for all i 2 N . Since M can allocate length at
most ↵ of the cake, it must return an allocation for which some agent receives utility at most
↵/n. Assume without loss of generality thatM returns an allocationAwith u1(A1) ↵/n.

Next, consider an instance R0 where Wi = Ci for all i 2 N \ {1} and W1 = [0, 1] \
S

i2N\{1} Ci. For this instance, we have `(W1) = 1� (n� 1) · (↵/n+ "). Let A0 = M(R0),
and let Y = A0

1 \W1. By the definition of egalitarian ratio, we have u1(A0
1)/u1([0, 1]) �

Egal-ration,↵(M), that is,

`(Y) � Egal-ration,↵(M) · `(W1)

=

✓
↵

n� (n� 1)↵
+ �

◆
·
⇣
1� (n� 1) ·

⇣↵
n
+ "
⌘⌘

=

✓
↵

n� (n� 1)↵
+ �

◆
·
✓
n� (n� 1)↵

n
� (n� 1)"

◆

=
↵

n
+

�(n� (n� 1)↵)

n
�
✓
(n� 1)(↵ + �(n� (n� 1)↵))

n� (n� 1)↵

◆
"

which is greater than ↵/n by our choice of ".
Finally, consider an instance R00 where Wi = Ci for all i 2 N \{1}, while W1 is a subset

of [0, 1] \
S

i2N\{1} Ci of length `(W1) = ↵/n + " such that `(W1 \ Y) > ↵/n. Since M
is position oblivious, by comparing instances R00 to R, agent 1 must also get a utility of at
most ↵/n in R00. However, if the agent reports [0, 1] \

S
i2N\{1} Ci as in R0, she gets utility

`(W1\Y) > ↵/n, meaning that M is not truthful and yields the desired contradiction.

Comparing this ratio with highest possible ratio of ↵ without the truthfulness condition
(Proposition 8.14),5 one can see that adding the truthfulness requirement incurs a (multi-

4Bei et al. [32] considered a slightly stronger version of position obliviousness, which the leximin solution
also satisfies.

5Note that the mechanism that achieves egalitarian ratio ↵ in Proposition 8.14 satisfies position oblivious-
ness.

116 CHAPTER 8. TRUTHFUL CAKE SHARING

plicative) “price” of n� (n� 1)↵ on the best egalitarian ratio. This price can be as large as
n when ↵ is close to 0, and decreases to 1 as ↵ approaches 1.

8.5 Maximum Nash Welfare

In this section, we address the MNW solution. We start by showing that like the leximin
solution (Proposition 8.5), the utility that each agent receives is the same in all MNW allo-
cations, thereby rendering the tie-breaking issue insignificant.

Proposition 8.19. Given any instance, for each agent i, the utility that i receives is the same
in all MNW allocations.

Proof. We proceed in a similar manner as in the proof of Proposition 8.5. Assume for
contradiction that two MNW allocations A,A0 give some agent di�erent utilities. Since the
utility of every agent in an MNW allocation is strictly positive, we have ui(A), ui(A0) > 0

for all i 2 N . Let A00 be an allocation such that for each pair of consecutive breakpoints, the
amount of cake between those breakpoints included inA00 is the average of the corresponding
amounts for A and A0. By linearity, A00 is a feasible allocation, and ui(A00) = ui(A)+ui(A0)

2

for every i 2 N . Recall that by the AM-GM inequality, it holds that x+y
2 � pxy for all

positive real numbers x, y, with equality if and only if x = y. We therefore have
Y

i2N

ui(A
00) =

Y

i2N

✓
ui(A) + ui(A0)

2

◆
>
Y

i2N

p
ui(A) · ui(A0) =

sY

i2N

ui(A)·
sY

i2N

ui(A0),

where the inequality is strict because ui(A) 6= ui(A0) for at least one i. Since
Q

i2N ui(A) =Q
i2N ui(A0), this implies that A00 has a higher Nash welfare than both A and A0, yielding

the desired contradiction.

In the two-agent case, we show that MNW and leximin are equivalent. The high-level
idea is that both solutions can be obtained via the following process. First, select portions
of the cake desired by both agents. If the quota ↵ has not been reached yet, let the agents
“eat” their desired piece using the same speed, until either (i) one of the agents has no more
desired cake, in which case we let the other agent continue eating, or (ii) we run out of quota.

Theorem 8.20. Consider an instance with two agents. Any leximin allocation is an MNW
allocation, and vice versa.

Proof. Fix an instance with two agents, and let X = W1\W2 and x = `(X). If x � ↵, then
an allocation A is leximin if and only if A ✓ X , and the same holds for MNW. Similarly, if
`(W1 [W2) ↵, the relevant condition for both leximin and MNW is W1 [W2 ✓ A.

Assume now that x < ↵ < `(W1 [W2). Since both the leximin and MNW solutions
satisfy Pareto optimality, we must have `(A) = ↵ and X ✓ A in any leximin or MNW
allocation A. In other words, the entire intersection of length x must be allocated, along
with a further length ↵�x of the cake. Let �1 = W1 \W2 and �2 = W2 \W1, and consider
two cases. The desired conclusion will follow from the analyses.

8.5. MAXIMUM NASH WELFARE 117

Case 1: min{`(�1), `(�2)} � (↵ � x)/2. In this case, for both leximin and MNW, the
length ↵ � x must be split equally between �1 and �2, otherwise the allocation can be
improved with respect to both the leximin ordering and the Nash welfare by splitting the
length equally. Conversely, any allocation that splits the length ↵ � x equally between �1

and �2 is both leximin and MNW.

Case 2: min{`(�1), `(�2)} < (↵�x)/2. Assume without loss of generality that `(�1) <

(↵� x)/2. Since `(�1)+ `(�2) = `(W1 [W2)� x > ↵� x, we have `(�2) > (↵� x)/2.
In this case, the entire �1 must be allocated, otherwise the allocation A can be improved
with respect to both the leximin ordering and the Nash welfare by allocating " more of �1

and " less of �2, for any 0 < " < `(�1 \ A). Conversely, any allocation that allocates the
entire �1 and length ↵� x� `(�1) of �2 is both leximin and MNW.

Theorems 8.7 and 8.20 together imply the following:

Corollary 8.21. For two agents and arbitrary tie-breaking, the MNW solution is truthful.

When n � 3, the two mechanisms are no longer equivalent. This can be seen from the
instance with W1 = [0, 1/2] and Wi = [1/2, 1] for all 2 i n, and ↵ = 1/2. The
leximin solution selects length 1/4 from each half of the cake, while MNW selects length
1
2n from the first half and n�1

2n from the second half. For our main result of this section,
we demonstrate that the MNW solution is not truthful even when an agent is only allowed
to report a subset of her true desired piece—as discussed in Section 8.1, this strengthens
the non-truthfulness result of Aziz et al. [24] where the manipulation is not of this simple
nature. In particular, we construct an instance with six agents wherein one of the agents can
obtain a higher utility by reporting a subset of her actual desired piece.

Theorem 8.22. The MNW solution is not truthful regardless of tie-breaking.

Proof. Assume for convenience that the cake is represented by the interval [0, 8]; this can
be trivially scaled back down to [0, 1]. In our original instance, there are six agents whose
utility functions are given as follows:

W1 = [0, 1] [[2, 8], W2 = [0, 1] [[2, 5],

W3 = [0, 1] [[5, 8], W4 = [1, 3] [[5, 6],

W5 = [1, 2] [[3, 4] [[6, 7], W6 = [1, 2] [[4, 5] [[7, 8],

and let ↵ = 2. See Figure 8.1.
First, observe that in this instance, every (non-integer) point is valued by exactly three

agents. Hence, for any subset A of the cake with `(A) 2, we have
P6

i=1 ui(A) 6. By
the inequality of arithmetic and geometric means (AM-GM), it holds that

Q6
i=1 ui(A) 1.

Moreover, by choosing A = [0, 2], we obtain ui(A) = 1 for each i, so this choice of A
maximizes the Nash welfare as `(A) = 2 and

Q6
i=1 ui(Ai) = 1, and gives agent 1 a utility

of 1. By Proposition 8.19, agent 1 receives a utility of 1 in every MNW allocation.

118 CHAPTER 8. TRUTHFUL CAKE SHARING

0 1 2 3 4 5 6 7 8
Cake

W1

W2

W3

W4

W5

W6

Figure 8.1: The original instance in the proof of Theorem 8.22.

Next, consider a modified instance where agent 1 reports W1 = [2, 8]. Consider an
MNW allocation A for this instance, and let x := `(A \ [2, 8]), y := `(A \ [1, 2]), and
z := `(A \ [0, 1]), so x + y + z 2. Let A0 be an allocation such that `(A0 \ [0, 1]) =

2� x� y � z, `(A0 \ [1, 2]) = y, and |A0 \ [j, j + 1]| = x/6 for j 2 {2, 3, . . . , 7}. Notice
that `(A0) = 2, so A0 is a feasible allocation. We claim that

Q6
i=1 ui(A0) �

Q6
i=1 ui(A).

Indeed, letting ⌧ := `(A \ [2, 5]), we have

u2(A) · u3(A) = (z + ⌧)(z + (x� ⌧))
⇣
z +

x

2

⌘2
 u2(A

0) · u3(A
0),

where the first inequality follows from the AM-GM inequality. Similarly, letting ✓ := `(A\
([2, 3] [[5, 6])) and ⇢ := `(A \ ([3, 4] [[6, 7])), it holds that

u4(A)u5(A)u6(A) = (y+ ✓)(y+ ⇢)(y+(x� ✓� ⇢))
⇣
y +

x

3

⌘3
= u4(A

0)u5(A
0)u6(A

0).

Moreover, since u1(A) = u1(A0) = x, it follows that
Q6

i=1 ui(A0) �
Q6

i=1 ui(A), as
claimed. This means that A0 is also an MNW allocation. The Nash welfare of A0 is

6Y

i=1

ui(A
0) = x

⇣
2� x

2
� y
⌘2 ⇣

y +
x

3

⌘3
.

In order to show MNW is not truthful regardless of tie-breaking, by Proposition 8.19, it
su�ces to show that the maximum of this expression in the domain x, y � 0, x+ y 2 [0, 2]

is attained when x > 1, since this would imply that agent 1 has a profitable deviation.
Let g(x, y) := x

�
2� x

2 � y
�2 �

y + x
3

�3, where x, y � 0 and x + y 2. We have
g(1.5, 0.5) = 0.84375. Now, from the AM-GM inequality,

9

4
· g(x, y) = x

✓
3� 3x

4
� 3y

2

◆2 ⇣
y +

x

3

⌘3

 x

✓
2(3� 3x/4� 3y/2) + 3(y + x/3)

5

◆5

= x

✓
6� x/2

5

◆5

.

8.6. WITHOUT BLOCKING: IMPOSSIBILITY RESULT 119

The derivative of the last expression is
�
6�3x
5

� ⇣6�x/2
5

⌘4
, which is non-negative for 0 x

2. This means that for x 1, we have

9

4
· g(x, y) 1 ·

✓
6� 1/2

5

◆5

=

✓
11

10

◆5

,

so g(x, y) 4
9 · (1.1)5 < 0.72 < g(1.5, 0.5). It follows that the maximum of g(x, y) is

attained when x > 1, as desired.

We remark here that even if we allow the MNW solution to choose any Ai such that
A \Wi ✓ Ai ✓ A instead of always choosing Ai = A \Wi (that is, the mechanism may
give agent i some parts ofA that she does not value, along with all parts ofA that she values),
the example in Theorem 8.22 still shows that any resulting mechanism is not truthful.

8.6 Without Blocking: Impossibility Result

As we have so far assumed that mechanisms can block agents from accessing certain parts of
the resource, an important question is what guarantees the mechanisms can achieve without
the ability to block. Indeed, while blocking can be easily implemented in our introductory
applications by restricting access to the sports facility or files in a cache memory, it may be
harder or more costly in other situations. In this section, we discuss mechanisms without
the blocking ability. When no blocking is allowed, given an input instance, a mechanism M
chooses a piece of cake A with `(A) ↵, and each agent i receives a utility of ui(A) =

`(A \Wi).
First, we observe that while the leximin solution is truthful if it has the ability to block

(Theorem 8.7), this is no longer the case in the absence of blocking.

Example 8.23 (Leximin is not truthful without blocking). Let ↵ = 1/2. First, consider an
instance R with two agents whose utility functions are given as follows: W1 = [0, 1/2] and
W2 = [1/2, 1]. Assume without loss of generality that the tie-breaking rule chooses A =

[1/4, 3/4]. Next, consider an instance R0 with the following utility functions: W1 = [0, 3/4]

and W2 = [1/2, 1]. Agent 1 receives a utility of 3/8 in every leximin allocation for R0.
However, if agent 1 misreports that W1 = [0, 1/2], the instance becomes the same as R, and
agent 1 receives a utility of 1/2 from the allocation A. 4

Our main result of this section shows that Example 8.23 is in fact not a coincidence.

Theorem 8.24. Without blocking, for every ↵ 2 (0, 1), no truthful, Pareto optimal, and
position oblivious mechanism can achieve a positive egalitarian ratio even in the case of
two agents.

Proof. We assume for contradiction that there exists some ↵ 2 (0, 1) and a truthful, Pareto
optimal, and position oblivious mechanism M with Egal-ratio2,↵(M) > 0. We consider a
sequence of instances with two agents, which we illustrate in Figure 8.2. In the following,

120 CHAPTER 8. TRUTHFUL CAKE SHARING

0 1/2 1
Cake

W 1
1

W 1
2

W 2
1

W 2
2

W 3
1

W 3
2

W 4
1

W 4
2

Figure 8.2: Example instances in the proof of Theorem 8.24.

the superscripts denote the indices of the instances. In all of the instances that we consider,
every part of the cake is desired by at least one agent, so Pareto optimality implies that M
must allocate exactly ↵ of the cake.

Instance R1: W 1
1 = [0, 0.5],W 1

2 = [0.5, 1]. LetM(R1) = A1. Because ↵ < 1, at least one
of the agents will not obtain her maximum utility of 0.5. Assume without loss of generality
that `(W 1

1 \A1) = x < 0.5; in other words, W 1
1 \A1 is non-empty. Since M has a positive

egalitarian ratio, it must hold that 0 < x < ↵.

Instance R2: W 2
1 = [0, 0.5],W 2

2 = A1 [[0.5, 1]. Let M(R2) = A2. We must have
A2 ✓ W 2

2 ; in other words, agent 2 will receive utility ↵. This is because otherwise, agent 2
can benefit by reporting W 2

2
0 = [0.5, 1] and the instance becomes R1, in which case agent 2

will receive utility ↵ from the output allocation A1. Note that because A2 is contained
entirely in W 2

2 , we still have `(W 2
1 \ A2) x.

Instance R3: W 3
1 = [0, 0.5] \ A1,W 3

2 = A1 [[0.5, 1]. Let M(R3) = A3. By the positive
egalitarian ratio, we have `(W 3

1 \ A3) = y > 0.

Instance R4: W 4
1 = ([0, 0.5] \ A1) [B,W 4

2 = A1 [[0.5, 1], where B is an interval of
length x contained in W 3

2 with the largest intersection with A3. That is,

• if `(W 4
2 \ A3) � x, let B be any subset of W 4

2 \ A3 of length x;

• if `(W 4
2 \ A3) < x, let B be any interval of length x that contains W 4

2 \ A3.

Let M(R4) = A4. In this instance, we must have u1(A4) > x because otherwise, agent 1
can benefit by reporting W 4

1
0 = [0, 0.5] \ A1 and the instance becomes R3, in which case

agent 1 will obtain a utility of x + y (when `(W 4
2 \ A3) � x) or a utility of ↵ (when

`(W 4
2 \ A3) < x). In both cases this value is strictly larger than x.

Finally, observe that instances R2 and R4 have the same Lf vector. In particular, we have
`(W 2

1) = `(W 4
1) = 1/2, `(W 2

2) = `(W 4
2) = 1/2+x, and `(W 2

1 \W 2
2) = `(W 4

1 \W 4
2) = x.

8.7. NON-UNIFORM COSTS 121

This means that each agent should receive the same utility in these two instances from our
position oblivious mechanism M. However, agent 1 receives utility at most x in R2 and
utility strictly larger than x in R4. We have reached a contradiction.

8.7 Non-Uniform Costs

In this section, we consider an extension of our model where the cost of selecting the cake
may be non-uniform. Specifically, there is a (public) cost function c : [0, 1] ! R�0, which
captures the cost for di�erent parts of the cake. We assume that the cost function is piecewise
constant, and without loss of generality that

R 1

0 c dx = 1 (if the whole cake has cost 0,
the mechanism can simply always choose the whole cake). Note that the main model of
this chapter corresponds to the cost function being the constant 1 over the entire cake. We
still consider piecewise uniform utility functions of the agents, and allow the mechanism to
choose a piece of cake with cost at most a given parameter ↵ 2 (0, 1).

We can generalize the leximin solution to this setting as follows. First, consider all
breakpoints of the cost function, where the breakpoints are defined in the same way as for
the utility functions. Then, for each piece of cake between two consecutive breakpoints, we
choose a fraction of at most ↵ of this cake by implementing the canonical leximin solution
with the same ↵. The generalized leximin solution then returns the union of the chosen cake.
By linearity, the chosen cake has cost at most ↵.

Theorem 8.25. For all n � 1 and ↵ 2 (0, 1), when the cost function is piecewise constant,
the generalized leximin solution is truthful and has egalitarian ratio ↵

n�(n�1)↵ .

Proof. We first establish truthfulness. The cost function is public and its breakpoints cannot
be controlled by the agents, so we can consider the piece of cake between each pair of
consecutive breakpoints separately. By Theorem 8.7, for each piece, reporting the utility
function truthfully yields the highest utility to each agent. Since the utility for the whole
cake is simply the sum of the utilities for di�erent pieces, the mechanism is truthful.

The upper bound of the egalitarian ratio follows from Theorem 8.15 since the cost func-
tion in the current theorem is more general. For the lower bound, observe that by Theo-
rem 8.15, for the piece of cake between each pair of consecutive breakpoints, each agent
receives a utility of at least a fraction ↵

n�(n�1)↵ of her utility for this entire piece of cake.
The desired bound then follows by linearity.

We remark that since we consider more general cost functions in this section, the egali-
tarian ratio ↵

n�(n�1)↵ is still optimal by Theorem 8.18. However, unlike the canonical leximin
solution, the generalized version is no longer Pareto optimal, since it may be possible to im-
prove the utility of all agents by choosing more than an ↵ fraction in certain parts of the cake
and less in other parts. An interesting question is therefore whether we can obtain Pareto
optimality while maintaining truthfulness and the egalitarian ratio.

122 CHAPTER 8. TRUTHFUL CAKE SHARING

8.8 Conclusion and Future Work

In this chapter, we have studied truthful and fair mechanisms in the cake sharing setting
where all agents share the same subset of a divisible resource. We established the leximin
solution as an attractive mechanism due to its truthfulness and its optimal egalitarian ratio
among all truthful and position oblivious mechanisms. On the other hand, we constructed
an intricate example showing that the maximum Nash welfare solution, which often exhibits
desirable properties in other settings, fails to yield truthfulness in cake sharing. Moreover,
we showed that in the absence of blocking, no truthful, Pareto optimal, and position obliv-
ious mechanism can achieve a positive egalitarian ratio—in particular, this implies that the
leximin solution is not truthful without blocking. An intriguing question is whether the im-
possibility still holds if we remove Pareto optimality or position obliviousness (or both), or
whether there is a truthful mechanism that attains a non-trivial fairness guarantee even when
blocking is not allowed.

In future research, it would be interesting to extend our cake sharing model to capture
other practical scenarios. One natural direction is to allow agents to have more complex
preferences beyond piecewise uniform utilities; the first step would be to consider piecewise
constant utilities, where an agent’s density function is constant over subintervals of the cake.
Another direction is to allow non-uniform costs over the cake—this models, e.g., the fact that
reserving a sports facility or a conference room can be more expensive during peak periods.
Our preliminary result in Section 8.7 shows that a generalization of the leximin solution is
still truthful and achieves the optimal egalitarian ratio for piecewise constant cost functions.
Other questions addressed in cake cutting, such as the price of truthfulness and the price of
fairness (i.e., the loss of social welfare due to truthfulness and fairness, respectively), are
equally relevant in cake sharing as well.

Chapter 9

Conclusion and Open Problems

As algorithmic systems and the internet are now revolutionizing how society allocates its
resources as well as start to inform or make important decisions in our society, it is crucial to
make sure that the technologies are used in a responsible and beneficial manner. With this
in mind, this dissertation contributes to the study of fair division, with a special emphasis
on providing theoretical results for various fair division settings.

We have been concerned with fair division of a mixture of divisible and indivisible goods
in Part I. The mixed goods setting not only captures deeply practical scenarios, but also gives
rise to conceptually and mathematically challenging questions. To this end, we studied the
envy-freeness for mixed goods (EFM), a generalization of envy-freeness and EF1, as well as
the maximin share (MMS) guarantee in Chapters 4 and 5, respectively. We showed that an
EFM allocation always exists for any number of agents with additive valuations. This result
relies on the perfect allocation oracle, which, however, cannot be implemented in a bounded
time in the RW model. It then leads to the following open question:

Question 9.1. Does there exist a bounded, or even finite, protocol in the Robertson-Webb
model that computes an EFM allocation in the general setting for any number of agents?

We also provided bounded protocols to compute EFM allocations in special cases, and
an ✏-EFM allocation in the general setting in time poly(n,m, 1/✏). It remains open to design
an algorithm that runs in time poly(n,m, log(1/✏)).

In addition, we present several preliminary results when considering EFM in conjunction
with economic e�ciency notions, but overall, some fundamental questions still remain open:

Question 9.2. Do weak EFM and PO allocations always exist in the mixed goods model?

En route, it would be tempting to first consider the special case with indivisible goods
and a single homogeneous divisible good (e.g., money), since even though this case is well-
studied in the literature when there is enough money, it remains an open question when it
comes to fair and e�cient allocations. Also relevant is to further generalize the setting where
the resources to be allocated can be goods or chores and can be indivisible or divisible.

Question 9.3. Do EFM allocations always exist in this much more general setting?

123

124 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

On the MMS front, we analyzed the relation of the worst-case MMS approximation
guarantees between mixed goods instances and indivisible goods instances, and presented
an algorithm to produce an ↵-MMS allocation, where ↵ monotonically increases in terms
of the ratio between agents’ values for the divisible goods and their maximin share.

Question 9.4. For future work, how to further improve the MMS approximation guarantee?

Besides EFM and MMS guarantee considered in this dissertation, one could also gener-
alize and/or study other fairness notions when allocating mixed goods. How well would this
notion behave with mixed goods in terms of its existence, approximation, and computation?

Another direction is to extend the mixed goods model to capture other practical scenar-
ios. For instance, we assume additive valuations and our results for MMS guarantee rely
on this assumption. Since substitute and complementary goods occur in practice, it would
be interesting to design algorithms for fair division problems with more general valuations.
Our EFM algorithmic framework (Section 4.2), as we remarked, works for any valuations
over bundles of indivisible goods as long as the valuations over divisible goods are additive.

Question 9.5. Do EFM allocations exist when valuations for divisible goods don’t add up?

Last but not least, extensions pointed out in the recent survey by Aziz [12] for indivisible
or divisible items, e.g., unequal entitlements of the participants [71, 77], are relevant for
mixed goods as well. Overall, we believe that fair division with mixed resources encodes
a rich structure and creates a new research direction that deserves to be pursued for future
work. For instance, we may analyze the price of fairness (see Chapter 6) for those notions
in the mixed goods setting. Since both the price of EF for divisible goods and the price of
EF1 for indivisible goods are settled [29, 38, 40, 67], it is natural and intriguing to resolve:

Question 9.6. What is the price of EFM?

In addition to economic e�ciency we mentioned earlier, we have also studied the trade-
o� between fairness and connectivity constraint in Part II, (both in a setting considers ex-
clusively indivisible goods); we provide thorough discussions in Chapters 6 and 7. It would
be interesting to further consider other aspects which are desirable, e.g., truthfulness, and
to see if it fares well with fairness considerations. This dissertation has concerned truthful-
ness solely in Part III. Specifically, we presented yet another model—cake sharing—where
all participants share the same selected subset of a cake which must be chosen subject to a
length constraint, and focused on designing truthfulness and fairness mechanisms.

Besides the works related to truthfulness in cake cutting (see Chapter 8), truthfulness
has also been concerned in fair division with indivisible goods [5, 6, 25, 94, 98]. While
in general truthfulness and fairness are incompatible, positive results have been shown if
agents’ valuations are restricted, especially when valuations for indivisible goods are binary.

Question 9.7. In a restricted mixed goods setting where, for instance, agents have binary
valuations, is it possible to design a mechanism which achieves truthfulness and fairness
(e.g., EFM) simultaneously?

Bibliography

[1] Rediet Abebe, Jon Kleinberg, and David C. Parkes. Fair division via social compari-
son. In Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 281–289, 2017. URL https://dl.acm.org/
doi/10.5555/3091125.3091171.

[2] Stéphane Airiau, Haris Aziz, Ioannis Caragiannis, Justin Kruger, Jérôme Lang, and
Dominik Peters. Portioning using ordinal preferences: Fairness and e�ciency. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 11–17, 2019. doi:10.24963/ijcai.2019/2.

[3] Ahmet Alkan, Gabrielle Demange, and David Gale. Fair allocation of indi-
visible goods and criteria of justice. Econometrica, 59(4):1023–1039, 1991.
doi:10.2307/2938172.

[4] Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.
doi:10.1016/0001-8708(87)90055-7.

[5] Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis. On truthful
mechanisms for maximin share allocations. In Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 31–37, 2016. URL
https://www.ijcai.org/Abstract/16/012.

[6] Georgios Amanatidis, Georgios Birmpas, George Christodoulou, and Evangelos
Markakis. Truthful allocation mechanisms without payments: Characterization and
implications on fairness. In Proceedings of the 18th ACM Conference on Economics
and Computation (EC), pages 545–562, 2017. doi:10.1145/3033274.3085147.

[7] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Ap-
proximation algorithms for computing maximin share allocations. ACM Transactions
on Algorithms (TALG), 13(4):52:1–52:28, 2017. doi:10.1145/3147173.

[8] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hol-
lender, and Alexandros A. Voudouris. Maximum Nash welfare and other
stories about EFX. Theoretical Computer Science (TCS), 863:69–85, 2021.
doi:10.1016/j.tcs.2021.02.020.

[9] Enriqueta Aragones. A derivation of the money rawlsian solution. Social Choice and
Welfare, 12(3):267–276, 1995. doi:10.1007/BF00179981.

[10] Eshwar Ram Arunachaleswaran, Siddharth Barman, and Nidhi Rathi. Fully
polynomial-time approximation schemes for fair rent division. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1994–
2013, 2019. doi:10.1137/1.9781611975482.121.

125

https://dl.acm.org/doi/10.5555/3091125.3091171
https://dl.acm.org/doi/10.5555/3091125.3091171
https://doi.org/10.24963/ijcai.2019/2
https://doi.org/10.2307/2938172
https://doi.org/10.1016/0001-8708(87)90055-7
https://www.ijcai.org/Abstract/16/012
https://doi.org/10.1145/3033274.3085147
https://doi.org/10.1145/3147173
https://doi.org/10.1016/j.tcs.2021.02.020
https://doi.org/10.1007/BF00179981
https://doi.org/10.1137/1.9781611975482.121

126 BIBLIOGRAPHY

[11] Yonatan Aumann and Yair Dombb. The e�ciency of fair division with connected
pieces. ACM Transactions on Economics and Computation (TEAC), 3(4):23:1–23:16,
2015. doi:10.1145/2781776.

[12] Haris Aziz. Developments in multi-agent fair allocation. In Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI), pages 13563–13568, 2020.
doi:10.1609/aaai.v34i09.7082.

[13] Haris Aziz. Achieving envy-freeness and equitability with monetary transfers. In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 5102–
5109, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/
16645.

[14] Haris Aziz and Florian Brandl. E�cient, fair, and incentive-compatible healthcare
rationing. In Proceedings of the 22nd ACM Conference on Economics and Compu-
tation (EC), pages 103–104, 2021. doi:10.1145/3465456.3467531.

[15] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cut-
ting protocol for any number of agents. In Proceedings of the 57th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 416–427, 2016.
doi:10.1109/FOCS.2016.52.

[16] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting
protocol for four agents. In Proceedings of the 48th Annual ACM Symposium on
Theory of Computing (STOC), pages 454–464, 2016. doi:10.1145/2897518.2897522.

[17] Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. In
Tamás Rudas and Gábor Péli, editors, Pathways Between Social Science and Com-
putational Social Science: Theories, Methods, and Interpretations, pages 215–236.
Springer International Publishing, 2021.

[18] Haris Aziz and Chun Ye. Cake cutting algorithms for piecewise constant and piece-
wise uniform valuations. In Proceedings of the 10th International Conference on Web
and Internet Economics (WINE), pages 1–14, 2014. doi:10.1007/978-3-319-13129-
0_1.

[19] Haris Aziz, Gerhard Rauchecker, Guido Schryen, and Toby Walsh. Algorithms for
max-min share fair allocation of indivisible chores. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI), pages 335–341, 2017. URL https:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14606.

[20] Haris Aziz, Sylvain Bouveret, Ioannis Caragiannis, Ira Giagkousi, and Jérôme Lang.
Knowledge, fairness, and social constraints. In Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence (AAAI), pages 4638–4645, 2018. URL https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17230.

[21] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of
indivisible goods and chores. In Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 53–59, 2019. doi:10.24963/ijcai.2019/8.

[22] Haris Aziz, Hau Chan, and Bo Li. Weighted maxmin fair share allocation of indivis-
ible chores. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 46–52, 2019. doi:10.24963/ijcai.2019/7.

https://doi.org/10.1145/2781776
https://doi.org/10.1609/aaai.v34i09.7082
https://ojs.aaai.org/index.php/AAAI/article/view/16645
https://ojs.aaai.org/index.php/AAAI/article/view/16645
https://doi.org/10.1145/3465456.3467531
https://doi.org/10.1109/FOCS.2016.52
https://doi.org/10.1145/2897518.2897522
https://doi.org/10.1007/978-3-319-13129-0_1
https://doi.org/10.1007/978-3-319-13129-0_1
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14606
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14606
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17230
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17230
https://doi.org/10.24963/ijcai.2019/8
https://doi.org/10.24963/ijcai.2019/7

BIBLIOGRAPHY 127

[23] Haris Aziz, Bo Li, and Xiaowei Wu. Strategyproof and approximately maxmin fair
share allocation of chores. In Proceedings of the 28th International Joint Conference
on artificial intelligence (IJCAI), pages 60–66, 2019. doi:10.24963/ijcai.2019/9.

[24] Haris Aziz, Anna Bogomolnaia, and Hervé Moulin. Fair mixing: The case of di-
chotomous preferences. ACM Transactions on Economics and Computation (TEAC),
8(4):18:1–18:27, 2020. doi:10.1145/3417738.

[25] Moshe Babaio�, Tomer Ezra, and Uriel Feige. Fair and truthful mechanisms for di-
chotomous valuations. In Proceedings of the 35th AAAI Conference on Artificial In-
telligence (AAAI), pages 5119–5126, 2021. URL https://ojs.aaai.org/index.
php/AAAI/article/view/16647.

[26] Nikhil Bansal and Maxim Sviridenko. The Santa Claus problem. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing (STOC), pages 31–40,
2006. doi:10.1145/1132516.1132522.

[27] Siddharth Barman and Sanath Kumar Krishnamurthy. Approximation algorithms for
maximin fair division. ACM Transactions on Economics and Computation (TEAC),
8(1):5:1–5:28, 2020. doi:10.1145/3381525.

[28] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and
e�cient allocations. In Proceedings of the 19th ACM Conference on Economics and
Computation (EC), pages 557–574, 2018. doi:10.1145/3219166.3219176.

[29] Siddharth Barman, Umang Bhaskar, and Nisarg Shah. Optimal bounds on the price
of fairness for indivisible goods. In Proceedings of the 16th International Conference
on Web and Internet Economics (WINE), pages 356–369, 2020. doi:10.1007/978-3-
030-64946-3_25.

[30] Xiaohui Bei and Warut Suksompong. Dividing a graphical cake. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 5159–5166, 2021.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16652.

[31] Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong Yang. Optimal
proportional cake cutting with connected pieces. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI), pages 1263–1269, 2012. URL https:
//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4980.

[32] Xiaohui Bei, Ning Chen, Guangda Huzhang, Biaoshuai Tao, and Jiajun Wu. Cake
cutting: Envy and truth. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), pages 3625–3631, 2017. doi:10.24963/ijcai.2017/507.

[33] Xiaohui Bei, Youming Qiao, and Shengyu Zhang. Networked fairness in cake cutting.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI), pages 3632–3638, 2017. doi:10.24963/ijcai.2017/508.

[34] Xiaohui Bei, Guangda Huzhang, and Warut Suksompong. Truthful fair di-
vision without free disposal. Social Choice and Welfare, 55:523–545, 2020.
doi:10.1007/s00355-020-01256-0.

[35] Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, and Warut Suksompong. The price of
connectivity in fair division. In Proceedings of the 35th AAAI Conference on Artifi-
cial Intelligence (AAAI), pages 5151–5158, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16651.

https://doi.org/10.24963/ijcai.2019/9
https://doi.org/10.1145/3417738
https://ojs.aaai.org/index.php/AAAI/article/view/16647
https://ojs.aaai.org/index.php/AAAI/article/view/16647
https://doi.org/10.1145/1132516.1132522
https://doi.org/10.1145/3381525
https://doi.org/10.1145/3219166.3219176
https://doi.org/10.1007/978-3-030-64946-3_25
https://doi.org/10.1007/978-3-030-64946-3_25
https://ojs.aaai.org/index.php/AAAI/article/view/16652
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4980
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4980
https://doi.org/10.24963/ijcai.2017/507
https://doi.org/10.24963/ijcai.2017/508
https://doi.org/10.1007/s00355-020-01256-0
https://ojs.aaai.org/index.php/AAAI/article/view/16651
https://ojs.aaai.org/index.php/AAAI/article/view/16651

128 BIBLIOGRAPHY

[36] Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang Lu. Fair division
of mixed divisible and indivisible goods. Artificial Intelligence (AIJ), 293:103436,
2021. doi:10.1016/j.artint.2020.103436. Preliminary version in AAAI’20.

[37] Xiaohui Bei, Shengxin Liu, Xinhang Lu, and Hongao Wang. Maximin fairness with
mixed divisible and indivisible goods. Autonomous Agents and Multi-Agent Systems
(JAAMAS), 35(2):34, 2021. doi:10.1007/s10458-021-09517-7. Preliminary version
in AAAI’21.

[38] Xiaohui Bei, Xinhang Lu, Pasin Manurangsi, and Warut Suksompong. The price of
fairness for indivisible goods. Theory of Computing Systems (TOCS), Forthcoming.
doi:10.1007/s00224-021-10039-8. Preliminary version in IJCAI’19.

[39] Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. (Almost full) EFX exists
for four agents (and beyond). CoRR, abs/2102.10654, 2021. URL https://arxiv.
org/abs/2102.10654v2.

[40] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. The price of fairness.
Operations Research, 59(1):17–31, 2011. doi:10.1287/opre.1100.0865.

[41] Aurélie Beynier, Yann Chevaleyre, Laurent Gourvès, Ararat Harutyunyan, Julien
Lesca, Nicolas Maudet, and Anaëlle Wilczynski. Local envy-freeness in house allo-
cation problems. Autonomous Agents and Multi-Agent Systems (JAAMAS), 33:591–
627, 2019. doi:10.1007/s10458-019-09417-x.

[42] Ivona Bezáková and Varsha Dani. Allocating indivisible goods. ACM SIGecom Ex-
changes, 5(3):11–18, 2005. doi:10.1145/1120680.1120683.

[43] Umang Bhaskar, AR Sricharan, and Rohit Vaish. On approximate envy-freeness for
indivisible chores and mixed resources. In Proceedings of the 24th International
Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), 2021. Forthcoming.

[44] Vittorio Bilò, Angelo Fanelli, Michele Flammini, Gianpiero Monaco, and Luca
Moscardelli. The price of envy-freeness in machine scheduling. Theoretical Com-
puter Science (TCS), 613:65–78, 2016. doi:10.1016/j.tcs.2015.10.046.

[45] Vittorio Bilò, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero
Monaco, Dominik Peters, Cosimo Vinci, and William S. Zwicker. Almost envy-
free allocations with connected bundles. In Proceedings of the 10th Innova-
tions in Theoretical Computer Science Conference (ITCS), pages 14:1–14:21, 2019.
doi:10.4230/LIPIcs.ITCS.2019.14.

[46] Arpita Biswas and Siddharth Barman. Fair division under cardinality constraints.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), pages 91–97, 2018. doi:10.24963/ijcai.2018/13.

[47] Anna Bogomolnaia and Hervé Moulin. Random matching under dichotomous prefer-
ences. Econometrica, 72(1):257–279, 2004. doi:10.1111/j.1468-0262.2004.00483.x.

[48] John Adrian Bondy and U. S. R. Murty. Graph Theory. Springer, 1st edition, 2008.

[49] Sylvain Bouveret and Michel Lemaître. Characterizing conflicts in fair division of
indivisible goods using a scale of criteria. Autonomous Agents and Multi-Agent Sys-
tems, 30(2):259–290, 2016. doi:10.1007/s10458-015-9287-3.

https://doi.org/10.1016/j.artint.2020.103436
https://doi.org/10.1007/s10458-021-09517-7
https://doi.org/10.1007/s00224-021-10039-8
https://arxiv.org/abs/2102.10654v2
https://arxiv.org/abs/2102.10654v2
https://doi.org/10.1287/opre.1100.0865
https://doi.org/10.1007/s10458-019-09417-x
https://doi.org/10.1145/1120680.1120683
https://doi.org/10.1016/j.tcs.2015.10.046
https://doi.org/10.4230/LIPIcs.ITCS.2019.14
https://doi.org/10.24963/ijcai.2018/13
https://doi.org/10.1111/j.1468-0262.2004.00483.x
https://doi.org/10.1007/s10458-015-9287-3

BIBLIOGRAPHY 129

[50] Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet. Fair allocation of indivisi-
ble goods. In Brandt et al. [60], chapter 12, pages 284–310.

[51] Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Do-
minik Peters. Fair division of a graph. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 135–141, 2017.
doi:10.24963/ijcai.2017/20.

[52] Sylvain Bouveret, Katarína Cechlárová, and Julien Lesca. Chore division on a
graph. Autonomous Agents and Multi-Agent Systems (JAAMAS), 33(5):540–563,
2019. doi:10.1007/s10458-019-09415-z.

[53] Steven J. Brams and Peter C. Fishburn. Fair division of indivisible items between
two people with identical preferences: Envy-freeness, Pareto-optimality, and equity.
Social Choice and Welfare, 17(2):247–267, 2000. doi:10.1007/s003550050019.

[54] Steven J. Brams and Alan D. Taylor. An envy-free cake division protocol. The Amer-
ican Mathematical Monthly, 102(1):9–18, 1995. doi:10.2307/2974850.

[55] Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute
Resolution. Cambridge University Press, 1996.

[56] Steven J. Brams and Alan D. Taylor. A procedure for divorce settlements. Mediation
Quarterly, 13(3):191–205, 1996. doi:10.1002/crq.3900130305.

[57] Steven J. Brams, D. Marc Kilgour, and Christian Klamler. The undercut procedure:
An algorithm for the envy-free division of indivisible items. Social Choice and Wel-
fare, 39(2):615–631, 2012. doi:10.1007/s00355-011-0599-1.

[58] Steven J. Brams, Marc Kilgour, and Christian Klamler. Two-person fair division of
indivisible items: An e�cient, envy-free algorithm. Notices of the AMS, 61(2):130–
141, 2014. doi:10.1090/noti1075.

[59] Florian Brandl, Felix Brandt, Dominik Peters, Christian Stricker, and Warut Suk-
sompong. Funding public projects: A case for the Nash product rule. CoRR,
abs/2005.07997, 2020. URL https://arxiv.org/abs/2005.07997v1.

[60] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia,
editors. Handbook of Computational Social Choice. Cambridge University Press,
2016.

[61] Simina Brânzei and Peter Bro Miltersen. A dictatorship theorem for cake cutting.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI), pages 482–488, 2015. URL http://ijcai.org/Abstract/15/074.

[62] Simina Brânzei and Noam Nisan. The query complexity of cake cutting. CoRR,
abs/1705.02946, 2017. URL https://arxiv.org/abs/1705.02946v3.

[63] Robert Bredereck, Andrzej Kaczmarczyk, and Rolf Niedermeier. Envy-free allo-
cations respecting social networks. In Proceedings of the 17th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 283–291,
2018. URL https://dl.acm.org/doi/10.5555/3237383.3237430.

https://doi.org/10.24963/ijcai.2017/20
https://doi.org/10.1007/s10458-019-09415-z
https://doi.org/10.1007/s003550050019
https://doi.org/10.2307/2974850
https://doi.org/10.1002/crq.3900130305
https://doi.org/10.1007/s00355-011-0599-1
https://doi.org/10.1090/noti1075
https://arxiv.org/abs/2005.07997v1
http://ijcai.org/Abstract/15/074
https://arxiv.org/abs/1705.02946v3
https://dl.acm.org/doi/10.5555/3237383.3237430

130 BIBLIOGRAPHY

[64] Johannes Brustle, Jack Dippel, Vishnu V. Narayan, Mashbat Suzuki, and Adrian
Vetta. One dollar each eliminates envy. In Proceedings of the 21st
ACM Conference on Economics and Computation (EC), pages 23–39, 2020.
doi:10.1145/3391403.3399447.

[65] Eric Budish. The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy (JPE), 119(6):1061–1103,
2011. doi:10.1086/664613.

[66] Ioannis Caragiannis and Stavros Ioannidis. Computing envy-freeable allocations with
limited subsidies. CoRR, abs/2002.02789, 2020. URL https://arxiv.org/abs/
2002.02789v1.

[67] Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Ky-
ropoulou. The e�ciency of fair division. Theory of Computing Systems (TOCS), 50
(4):589–610, 2012. doi:10.1007/s00224-011-9359-y.

[68] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item
with high Nash welfare: The virtue of donating items. In Proceedings of the
20th ACM Conference on Economics and Computation (EC), pages 527–545, 2019.
doi:10.1145/3328526.3329574.

[69] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg
Shah, and Junxing Wang. The unreasonable fairness of maximum Nash welfare.
ACM Transactions on Economics and Computation (TEAC), 7(3):12:1–12:32, 2019.
doi:10.1145/3355902.

[70] Katarína Cechlárová and Eva Pillárová. On the computability of equitable divisions.
Discrete Optimization, 9(4):249–257, 2012. doi:10.1016/j.disopt.2012.08.001.

[71] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. Weighted
envy-freeness in indivisible item allocation. ACM Transactions on Economics and
Computation (TEAC), Forthcoming. Preliminary version in AAMAS’20.

[72] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents.
In Proceedings of the 21st ACM Conference on Economics and Computation (EC),
pages 1–19, 2020. doi:10.1145/3391403.3399511.

[73] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa.
A little charity guarantees almost envy-freeness. In Proceedings of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2658–2672, 2020.
doi:10.1137/1.9781611975994.162.

[74] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu
Misra. Improving EFX guarantees through rainbow cycle number. In Proceedings
of the 22nd ACM Conference on Economics and Computation (EC), pages 310–311,
2021. doi:10.1145/3465456.3467605.

[75] Yiling Chen, John K. Lai, David C. Parkes, and Ariel D. Procaccia. Truth, jus-
tice, and cake cutting. Games and Economic Behavior (GEB), 77(1):284–297, 2013.
doi:10.1016/j.geb.2012.10.009.

[76] Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making.
In Proceedings of the 18th ACM Conference on Economics and Computation (EC),
pages 629–646, 2017. doi:10.1145/3033274.3085125.

https://doi.org/10.1145/3391403.3399447
https://doi.org/10.1086/664613
https://arxiv.org/abs/2002.02789v1
https://arxiv.org/abs/2002.02789v1
https://doi.org/10.1007/s00224-011-9359-y
https://doi.org/10.1145/3328526.3329574
https://doi.org/10.1145/3355902
https://doi.org/10.1016/j.disopt.2012.08.001
https://doi.org/10.1145/3391403.3399511
https://doi.org/10.1137/1.9781611975994.162
https://doi.org/10.1145/3465456.3467605
https://doi.org/10.1016/j.geb.2012.10.009
https://doi.org/10.1145/3033274.3085125

BIBLIOGRAPHY 131

[77] Ágnes Cseh and Tamás Fleiner. The complexity of cake cutting with un-
equal shares. ACM Transactions on Algorithms (TALG), 16(3):29:1–29:21, 2020.
doi:10.1145/3380742.

[78] John P. Dickerson, Jonathan Goldman, Jeremy Karp, Ariel D. Procaccia, and Tuomas
Sandholm. The computational rise and fall of fairness. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI), pages 1405–1411, 2014. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8348.

[79] Lester E. Dubins and Edwin Henry Spanier. How to cut a cake fairly. The American
Mathematical Monthly, 68(1):1–17, 1961. doi:10.2307/2311357.

[80] Je� Edmonds and Kirk Pruhs. Balanced allocations of cake. In Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
623–634, 2006. doi:10.1109/FOCS.2006.17.

[81] Je� Edmonds and Kirk Pruhs. Cake cutting really is not a piece of
cake. ACM Transactions on Algorithms (TALG), 7(4):51:1–51:12, 2011.
doi:10.1145/2000807.2000819.

[82] Ulle Endriss, editor. Trends in Computational Social Choice. AI Access, 2017.

[83] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics,
7(3):285–296, 1984. doi:10.1016/0166-218X(84)90005-2.

[84] Shimon Even and Robert Endre Tarjan. Computing an st-numbering. Theoretical
Computer Science (TCS), 2(3):339–344, 1976. doi:10.1016/0304-3975(76)90086-4.

[85] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner
voting: A new challenge for social choice theory. In Endriss [82], chapter 2, pages
27–47.

[86] Alireza Farhadi, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, Sébastien La-
haie, David Pennock, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair al-
location of indivisible goods to asymmetric agents. Journal of Artificial Intelligence
Research (JAIR), 64(1):1–20, 2019. doi:10.1613/jair.1.11291.

[87] Uriel Feige, Ariel Sapir, and Laliv Tauber. A tight negative example for mms fair al-
locations. CoRR, abs/2104.04977v1, 2021. URL https://arxiv.org/abs/2104.
04977v1.

[88] Duncan Karl Foley. Resource allocation and the public sector. Yale Economics Es-
says, 7(1):45–98, 1967.

[89] Eric J. Friedman, Vasilis Gkatzelis, Christos-Alexandros Psomas, and Scott Shenker.
Fair and e�cient memory sharing: Confronting free riders. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence (AAAI), pages 1965–1972, 2019.
doi:10.1609/aaai.v33i01.33011965.

[90] Ya’akov (Kobi) Gal, Moshe Mash, Ariel D. Procaccia, and Yair Zick. Which is the
fairest (rent division) of them all? Journal of the ACM (JACM), 64(6):39:1–39:22,
2017. doi:10.1145/3131361.

[91] Jugal Garg and Setareh Taki. An improved approximation algorithm
for maximin shares. Artificial Intelligence (AIJ), 300:103547, 2021.
doi:10.1016/j.artint.2021.103547.

https://doi.org/10.1145/3380742
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8348
https://doi.org/10.2307/2311357
https://doi.org/10.1109/FOCS.2006.17
https://doi.org/10.1145/2000807.2000819
https://doi.org/10.1016/0166-218X(84)90005-2
https://doi.org/10.1016/0304-3975(76)90086-4
https://doi.org/10.1613/jair.1.11291
https://arxiv.org/abs/2104.04977v1
https://arxiv.org/abs/2104.04977v1
https://doi.org/10.1609/aaai.v33i01.33011965
https://doi.org/10.1145/3131361
https://doi.org/10.1016/j.artint.2021.103547

132 BIBLIOGRAPHY

[92] Jugal Garg, Peter McGlaughlin, and Setareh Taki. Approximating maximin share al-
locations. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA),
pages 20:1–20:11, 2019. doi:10.4230/OASIcs.SOSA.2019.20.

[93] Mohammad Ghodsi, MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Sed-
dighin, and Hadi Yami. Fair allocation of indivisible goods: Improvement. Mathe-
matics of Operations Research, Forthcoming. doi:10.1287/moor.2020.1096.

[94] Hiromichi Goko, Ayumi Igarashi, Yasushi Kawase, Kazuhisa Makino, Hanna Sumita,
Akihisa Tamura, Yu Yokoi, and Makoto Yokoo. Fair and truthful mechanism with
limited subsidy. CoRR, abs/2105.01801, 2021. URL https://arxiv.org/abs/
2105.01801v1.

[95] Jonathan Goldman and Ariel D. Procaccia. Spliddit: Unleashing fair division algo-
rithms. SIGecom Exchanges, 13(2):41–46, 2015. doi:10.1145/2728732.2728738.

[96] Laurent Gourvès and Jérôme Monnot. On maximin share allocations
in matroids. Theoretical Computer Science (TCS), 754:50–64, 2019.
doi:10.1016/j.tcs.2018.05.018.

[97] Daniel Halpern and Nisarg Shah. Fair division with subsidy. In Proceedings of the
12th International Symposium on Algorithmic Game Theory (SAGT), pages 374–389,
2019. doi:10.1007/978-3-030-30473-7_25.

[98] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. Fair di-
vision with binary valuations: One rule to rule them all. In Proceedings of the 16th
International Conference on Web and Internet Economics (WINE), pages 370–383,
2020. doi:10.1007/978-3-030-64946-3_26.

[99] Sandy Heydrich and Rob van Stee. Dividing connected chores fairly. Theoretical
Computer Science (TCS), 593:51–61, 2015. doi:10.1016/j.tcs.2015.05.041.

[100] John Hopcroft and Robert Tarjan. Algorithm 447: E�cient algorithms for
graph manipulation. Communications of the ACM (CACM), 16(6):372–378, 1973.
doi:10.1145/362248.362272.

[101] Xin Huang and Pinyan Lu. An algorithmic framework for approximating maximin
share allocation of chores. In Proceedings of the 22nd ACM Conference on Economics
and Computation (EC), pages 630–631, 2021. doi:10.1145/3465456.3467555.

[102] Ayumi Igarashi and Dominik Peters. Pareto-optimal allocation of indi-
visible goods with connectivity constraints. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (AAAI), pages 2045–2052, 2019.
doi:10.1609/aaai.v33i01.33012045.

[103] Heinz A. Jung. Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen.
Mathematische Annalen, 187(2):95–103, 1970. doi:10.1007/BF01350174.

[104] D. Marc Kilgour and Rudolf Vetschera. Two-player fair division of indivisible items:
Comparison of algorithms. European Journal of Operational Research (EJOR), 271
(2):620–631, 2018. doi:10.1016/j.ejor.2018.05.057.

[105] Flip Klijn. An algorithm for envy-free allocations in an economy with indi-
visible objects and money. Social Choice and Welfare, 17(2):201–215, 2000.
doi:10.1007/s003550050015.

https://doi.org/10.4230/OASIcs.SOSA.2019.20
https://doi.org/10.1287/moor.2020.1096
https://arxiv.org/abs/2105.01801v1
https://arxiv.org/abs/2105.01801v1
https://doi.org/10.1145/2728732.2728738
https://doi.org/10.1016/j.tcs.2018.05.018
https://doi.org/10.1007/978-3-030-30473-7_25
https://doi.org/10.1007/978-3-030-64946-3_26
https://doi.org/10.1016/j.tcs.2015.05.041
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/3465456.3467555
https://doi.org/10.1609/aaai.v33i01.33012045
https://doi.org/10.1007/BF01350174
https://doi.org/10.1016/j.ejor.2018.05.057
https://doi.org/10.1007/s003550050015

BIBLIOGRAPHY 133

[106] David Kurokawa, John K. Lai, and Ariel D. Procaccia. How to cut a cake before the
party ends. In Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI), pages 555–561, 2013. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI13/paper/view/6365.

[107] David Kurokawa, Ariel D. Procaccia, and Nisarg Shah. Leximin allocations in the
real world. ACM Transactions on Economics and Computation (TEAC), 6(3-4):11:1–
11:24, 2018. doi:10.1145/3274641.

[108] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing
approximate maximin shares. Journal of the ACM (JACM), 65(2):8:1–8:27, 2018.
doi:10.1145/3140756.

[109] Sascha Kurz. The price of fairness for a small number of indivisible items. In Oper-
ations Research Proceedings, pages 335–340, 2014. doi:10.1007/978-3-319-28697-
6_47.

[110] Maria Kyropoulou, Warut Suksompong, and Alexandros A. Voudouris. Almost envy-
freeness in group resource allocation. Theoretical Computer Science (TCS), 841:
110–123, 2020. doi:10.1016/j.tcs.2020.07.008.

[111] A. A. Liapouno�. Sur les fonctions-vecteurs complètement additives. Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya, 4(6):465–478, 1940. URL http:
//mi.mathnet.ru/eng/izv3907.

[112] Claudia Lindner and Jörg Rothe. Cake-cutting: Fair division of divisible goods. In
Jörg Rothe, editor, Economics and Computation: An Introduction to Algorithmic
Game Theory, Computational Social Choice, and Fair Division, chapter 7, pages
395–491. Springer-Verlag Berlin Heidelberg, 2016.

[113] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi.
On approximately fair allocations of indivisible goods. In Proceedings of
the 5th ACM Conference on Electronic Commerce (EC), pages 125–131, 2004.
doi:10.1145/988772.988792.

[114] Zbigniew Lonc and Miroslaw Truszczynski. Maximin share allocations on cy-
cles. Journal of Artificial Intelligence Research (JAIR), 69:613–655, 2020.
doi:10.1613/jair.1.11702.

[115] Ryoga Mahara. Existence of EFX for two additive valuations. CoRR, abs/2008.08798,
2021. URL https://arxiv.org/abs/2008.08798v2.

[116] Pasin Manurangsi and Warut Suksompong. Computing a small agreeable
set of indivisible items. Artificial Intelligence (AIJ), 268:96–114, 2019.
doi:10.1016/j.artint.2018.10.001.

[117] Pasin Manurangsi and Warut Suksompong. When do envy-free allocations ex-
ist? SIAM Journal on Discrete Mathematics (SIDMA), 34(3):1505–1521, 2020.
doi:10.1137/19M1279125.

[118] Pasin Manurangsi and Warut Suksompong. Closing gaps in asymptotic fair di-
vision. SIAM Journal on Discrete Mathematics (SIDMA), 35(2):668–706, 2021.
doi:10.1137/20M1353381.

https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6365
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6365
https://doi.org/10.1145/3274641
https://doi.org/10.1145/3140756
https://doi.org/10.1007/978-3-319-28697-6_47
https://doi.org/10.1007/978-3-319-28697-6_47
https://doi.org/10.1016/j.tcs.2020.07.008
http://mi.mathnet.ru/eng/izv3907
http://mi.mathnet.ru/eng/izv3907
https://doi.org/10.1145/988772.988792
https://doi.org/10.1613/jair.1.11702
https://arxiv.org/abs/2008.08798v2
https://doi.org/10.1016/j.artint.2018.10.001
https://doi.org/10.1137/19M1279125
https://doi.org/10.1137/20M1353381

134 BIBLIOGRAPHY

[119] Evangelos Markakis. Approximation algorithms and hardness results for fair division
with indivisible goods. In Endriss [82], chapter 12, pages 231–247.

[120] Eric S. Maskin. On the fair allocation of indivisible goods. In George R. Feiwel,
editor, Arrow and the Foundations of the Theory of Economic Policy, chapter 11,
pages 341–349. Palgrave Macmillan UK, 1987. doi:10.1007/978-1-349-07357-3_12.

[121] Avishay Maya and Noam Nisan. Incentive compatible two player cake cutting. In
Proceedings of the 8th International Workshop on Internet and Network Economics
(WINE), pages 170–183, 2012. doi:10.1007/978-3-642-35311-6_13.

[122] Marc Meertens, Jos Potters, and Hans Reijnierse. Envy-free and Pareto e�cient al-
locations in economies with indivisible goods and money. Mathematical Social Sci-
ences, 44(3):223–233, 2002. doi:10.1016/S0165-4896(02)00064-1.

[123] Vijay Menon and Kate Larson. Deterministic, strategyproof, and fair cake cutting.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI), pages 352–358, 2017. doi:10.24963/ijcai.2017/50.

[124] Gábor Mészáros. Linkedness and Path-Pairability in the Cartesian Product of
Graphs. PhD thesis, Department of Mathematics and its Applications, Central Euro-
pean University, 2015.

[125] Marcin Michorzewski, Dominik Peters, and Piotr Skowron. Price of fair-
ness in budget division and probabilistic social choice. In Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI), pages 2184–2191, 2020.
doi:10.1609/aaai.v34i02.5594.

[126] Neeldhara Misra and Aditi Sethia. Fair division is hard even for amicable agents.
In Proceedings of the 21st Italian Conference on Theoretical Computer Science
(ICTCS), pages 202–207, 2020.

[127] Hervé Moulin. Fair Division and Collective Welfare. MIT Press, 2003.

[128] Hervé Moulin. Fair division in the internet age. Annual Review of Economics, 11(1):
407–441, 2019. doi:10.1146/annurev-economics-080218-025559.

[129] Hoon Oh, Ariel D. Procaccia, and Warut Suksompong. Fairly allocating many goods
with few queries. SIAM Journal on Discrete Mathematics (SIDMA), 35(2):788–813,
2021. doi:10.1137/20M1313349.

[130] Parag A. Pathak, Tayfun Sönmez, M. Utku Ünver, and M. Bumin Yenmez. Fair alloca-
tion of vaccines, ventilators and antiviral treatments: Leaving no ethical value behind
in health care rationing. In Proceedings of the 22nd ACM Conference on Economics
and Computation (EC), pages 785–786, 2021. doi:10.1145/3465456.3467604.

[131] Dominik Peters. Proportionality and strategyproofness in multiwinner elections. In
Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pages 1549–1557, 2018. URL https://dl.acm.org/
doi/10.5555/3237383.3237931.

[132] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valua-
tions. SIAM Journal on Discrete Mathematics (SIDMA), 34(2):1039–1068, 2020.
doi:10.1137/19M124397X.

https://doi.org/10.1007/978-1-349-07357-3_12
https://doi.org/10.1007/978-3-642-35311-6_13
https://doi.org/10.1016/S0165-4896(02)00064-1
https://doi.org/10.24963/ijcai.2017/50
https://doi.org/10.1609/aaai.v34i02.5594
https://doi.org/10.1146/annurev-economics-080218-025559
https://doi.org/10.1137/20M1313349
https://doi.org/10.1145/3465456.3467604
https://dl.acm.org/doi/10.5555/3237383.3237931
https://dl.acm.org/doi/10.5555/3237383.3237931
https://doi.org/10.1137/19M124397X

BIBLIOGRAPHY 135

[133] Benjamin Plaut and Tim Roughgarden. Communication complexity of discrete
fair division. SIAM Journal on Computing (SICOMP), 49(1):206–243, 2020.
doi:10.1137/19M1244305.

[134] Ariel D. Procaccia. Cake cutting algorithms. In Brandt et al. [60], chapter 13, pages
311–329.

[135] Ariel D. Procaccia. An answer to fair division’s most enigmatic question:
Technical perspective. Communications of the ACM (CACM), 63(4):118, 2020.
doi:10.1145/3382131.

[136] Ariel D. Procaccia and Junxing Wang. A lower bound for equitable cake cutting.
In Proceedings of the 18th ACM Conference on Economics and Computation (EC),
pages 479–495, 2017. doi:10.1145/3033274.3085107.

[137] Ariel D. Procaccia, Rodrigo A. Velez, and Dingli Yu. Fair rent division on a bud-
get. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI),
pages 1177–1184, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16936.

[138] Jack Robertson and William Webb. Cake-Cutting Algorithm: Be Fair If You Can. A
K Peters/CRC Press, 1998.

[139] Jörg Rothe, editor. Economics and Computation: An Introduction to Algorithmic
Game Theory, Computational Social Choice, and Fair Division. Springer-Verlag
Berlin Heidelberg, 2016.

[140] Alexander Rubchinsky. Brams-Taylor model of fair division for divisi-
ble and indivisible items. Mathematical Social Sciences, 60(1):1–14, 2010.
doi:10.1016/j.mathsocsci.2010.03.004.

[141] Fedor Sandomirskiy and Erel Segal-Halevi. E�cient fair division with minimal
sharing. CoRR, abs/1908.01669, 2020. URL https://arxiv.org/abs/1908.
01669v2.

[142] Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information
Processing Letters, 113(7):241–244, 2013. doi:10.1016/j.ipl.2013.01.016.

[143] Erel Segal-Halevi and Warut Suksompong. Democratic fair allocation
of indivisible goods. Artificial Intelligence (AIJ), 277:103167, 2019.
doi:10.1016/j.artint.2019.103167.

[144] Erel Segal-Halevi and Balázs Róbert Sziklai. Monotonicity and competitive equilib-
rium in cake-cutting. Economic Theory, 68(2):363–401, 2019. doi:10.1007/s00199-
018-1128-6.

[145] Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items:
From proportional multirepresentation to group recommendation. Artificial Intelli-
gence (AIJ), 241:191–216, 2016. doi:10.1016/j.artint.2016.09.003.

[146] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.
URL http://www.jstor.org/stable/1914289.

[147] Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly,
87(8):640–644, 1980. doi:10.2307/2320951.

https://doi.org/10.1137/19M1244305
https://doi.org/10.1145/3382131
https://doi.org/10.1145/3033274.3085107
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16936
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16936
https://doi.org/10.1016/j.mathsocsci.2010.03.004
https://arxiv.org/abs/1908.01669v2
https://arxiv.org/abs/1908.01669v2
https://doi.org/10.1016/j.ipl.2013.01.016
https://doi.org/10.1016/j.artint.2019.103167
https://doi.org/10.1007/s00199-018-1128-6
https://doi.org/10.1007/s00199-018-1128-6
https://doi.org/10.1016/j.artint.2016.09.003
http://www.jstor.org/stable/1914289
https://doi.org/10.2307/2320951

136 BIBLIOGRAPHY

[148] Francis Edward Su. Rental harmony: Sperner’s lemma in fair divi-
sion. The American Mathematical Monthly, 106(10):930–942, 1999.
doi:10.1080/00029890.1999.12005142.

[149] Warut Suksompong. Approximate maximin shares for groups of agents. Mathemat-
ical Social Sciences, 92:40–47, 2018. doi:10.1016/j.mathsocsci.2017.09.004.

[150] Warut Suksompong. Fairly allocating contiguous blocks of indivisible items. Discrete
Applied Mathematics, 260:227–236, 2019. doi:10.1016/j.dam.2019.01.036.

[151] Ankang Sun, Bo Chen, and Xuan Vinh Doan. Connections between fairness criteria
and e�ciency for allocating indivisible chores. In Proceedings of the 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
1281–1289, 2021. URL https://dl.acm.org/doi/10.5555/3463952.3464100.

[152] Lars-Gunnar Svensson. Large indivisibles: An analysis with respect to price equilib-
rium and fairness. Econometrica, 51(4):939–954, 1983. doi:10.2307/1912044.

[153] William Thomson. Introduction to the theory of fair allocation. In Brandt et al. [60],
chapter 11, pages 261–283.

[154] Hal R. Varian. Equity, envy, and e�ciency. Journal of Economic Theory, 9(1):63–91,
1974. doi:10.1016/0022-0531(74)90075-1.

[155] Rodrigo A. Velez. Equitable rent division. ACM Transactions on Economics and
Computation (TEAC), 6(2):9:1–9:25, 2018. doi:10.1145/3274528.

[156] Dietrich Weller. Fair division of a measurable space. Journal of Mathematical Eco-
nomics, 14(1):5–17, 1985. doi:10.1016/0304-4068(85)90023-0.

[157] Hassler Whitney. Congruent graphs and the connectivity of graphs. American Jour-
nal of Mathematics, 54(1):150–168, 1932. doi:10.2307/2371086.

[158] Hassler Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34(2):339–362, 1932. doi:10.2307/1989545.

[159] Gerhard J. Woeginger. A polynomial-time approximation scheme for maximizing
the minimum machine completion time. Operations Research Letters (ORL), 20(4):
149–154, 1997. doi:10.1016/S0167-6377(96)00055-7.

[160] Hobart Peyton Young. Equity: In Theory and Practice. Princeton University Press,
1995.

https://doi.org/10.1080/00029890.1999.12005142
https://doi.org/10.1016/j.mathsocsci.2017.09.004
https://doi.org/10.1016/j.dam.2019.01.036
https://dl.acm.org/doi/10.5555/3463952.3464100
https://doi.org/10.2307/1912044
https://doi.org/10.1016/0022-0531(74)90075-1
https://doi.org/10.1145/3274528
https://doi.org/10.1016/0304-4068(85)90023-0
https://doi.org/10.2307/2371086
https://doi.org/10.2307/1989545
https://doi.org/10.1016/S0167-6377(96)00055-7

	Introduction
	Overview of Thesis Structure and Our Results

	Preliminaries
	Cake Cutting Model
	Indivisible Goods Setting
	Mixed Goods Model

	Axiomatic Study of Fairness for Mixed Goods
	Introduction
	Related Work

	Envy-Freeness for Mixed Goods
	Introduction
	Existence
	The Algorithm
	Analysis

	EFM Allocation in Special Case
	Two Agents
	Any Number of Agents with Piecewise Linear Functions

	Relaxation: Epsilon-EFM
	The Algorithm
	Analysis

	EFM and Economic Efficiency

	Maximin Share Guarantee
	Introduction
	MMS Approximation Guarantee
	Worst-Case MMS Approximation Guarantee
	Cake Does Not Always Help

	Existence and Computation of Approximate MMS Allocations
	Homogeneous Cake
	Heterogeneous Cake
	Computation
	Improvement of the Approximation Ratio

	Fairness Versus Other Desideratum for Indivisible Goods
	Price of Fairness
	Introduction
	Related Work

	Preliminaries
	Envy-Freeness Relaxations
	Round-Robin Algorithm
	Balancedness
	Welfare Maximizers
	Pareto Optimality
	Conclusion and Future Work

	Price of Connectivity
	Introduction
	Related Work

	Preliminaries
	Maximin Share Guarantee
	Two Agents
	Any Number of Agents

	Envy-Freeness Relaxations
	Two Agents
	Three Agents

	Conclusion and Future Work

	Other Settings
	Truthful Cake Sharing
	Introduction
	Related Work

	Cake Sharing Model
	Leximin Solution
	Egalitarian Ratio
	Maximum Nash Welfare
	Without Blocking: Impossibility Result
	Non-Uniform Costs
	Conclusion and Future Work

	Conclusion and Open Problems
	Bibliography

